Contents

Syllabuses - Overview .. 2
PHYS10071 Mathematics 1 (Core) SEM1 .. 4
PHYS10101 Dynamics (Core) SEM1 .. 6
PHYS10121 Quantum Physics and Relativity (Core) SEM1 9
PHYS10180/PHYS10280 First Year Laboratory (Core) ALL YEAR 11
PHYS10180E Digital Electronics (Core) ALL YEAR 13
PHYS10181B Computing and Data Analysis (Core) ALL YEAR 14
PHYS10181F Special Topics in Physics (Core) ALL YEAR 16
PHYS10181L Light and Optics (Core) ALL YEAR 17
PHYS10182C Circuits (Core) ALL YEAR ... 18
PHYS10191 Introduction to Astrophysics and Cosmology (Core) SEM1 19
PHYS10302 Vibrations and Waves (Core) SEM2 21
PHYS10342 Electricity and Magnetism (Core) SEM2 23
PHYS10352 Properties of Matter (Core) SEM2 25
PHYS10372 Mathematics 2 (Core) SEM2 .. 29
PHYS10461 Physics in Everyday Life (Option) SEM1 29
PHYS10471 Random Processes in Physics (M) (C/O) SEM1 31
PHYS10622 Physics of Energy Sources SEM2 .. 33
PHYS10672 Advanced Dynamics (M) (C/O) SEM2 35
PHYS10692 Physics of the Solar System (C/O) SEM2 37
NEW PHYS10792 Statistical Methods of Data Analysis (Option) SEM2 ... 39
PHYS20101 Introduction to Quantum Mechanics (Core) SEM1 41
PHYS20141 Electromagnetism (Core) SEM1 .. 43
PHYS20161 Introduction to Programming for Physicists (Core) SEM1 45
PHYS20171 Mathematics of Waves and Fields (Core) SEM1 47
PHYS202080/ PHYS20280 Second Year Laboratory (Core) ALL YEAR 50
PHYS20181E Amplifiers and Feedback (Core) ALL YEAR 52
PHYS20252 Fundamentals of Solid State Physics (Core) SEM2 54
PHYS202312 Wave Optics (Core) SEM2 ... 57
PHYS202352 Thermal and Statistical Physics (Core) SEM2 59
PHYS20401 Lagrangian Dynamics (M) (C/O) SEM1 61
PHYS20491 Galaxies (C/O) SEM1 ... 63
PHYS20612 Introduction to Photonics (Option) SEM2 65
PHYS20672 Complex Variables and Vector Spaces (M) (C/O) SEM2 67
PHYS20692 Astrophysical Processes (C/O) SEM2 69
PHYS20762 Computational Physics (Option) SEM2 71
PHYS20811/ PHYS20821 Professional Development (Core) SEM1 73
PHYS20872 Theory Computing Project (Core) SEM2 75
PHYS30101 Applications of Quantum Physics (Core) SEM1 77
PHYS30121 Introduction to Nuclear and Particle Physics (Core) SEM1 79
PHYS30141 Electromagnetic Radiation (Option) SEM1 81
PHYS30151 Thermal Physics of Bose and Fermi Gases (Core) SEM1 84
PHYS30180/ PHYS30280 Third Year Laboratory (Core) ALL YEAR 86
PHYS30201 Mathematical Fundamentals of Quantum Mechanics (M) (C/O) SEM1 .. 89
PHYS30392 Cosmology (C/O) SEM2 ... 91
PHYS30441 Electrodynamics (M) (C/O) SEM1 ... 94
PHYS30471 Introduction to Nonlinear Physics (M) (Option) SEM1 96
PHYS30511 Nuclear Fusion and Astrophysical Plasmas (Option) SEM1 98
PHYS30611 Lasers and Photonics (Core) SEM1 100
PHYS30632 Physics of Medical Imaging (Option) SEM2 .. 123
PHYS30672 Mathematical Methods for Physics (M) (C/O) SEM2 ... 126
PHYS30732 The Physics of Living Processes (Option) SEM2 .. 128
PHYS30762 Object-Oriented Programming in C++ (Option) SEM2 .. 130
PHYS30811 Second Vacation Essay (Core) SEM1 ... 132
PHYS30880 BSc Dissertation (Core) ALL YEAR ... 134
PHYS31692 Exoplanets (Option) SEM2 .. 136
PHYS40181 [SEM1]/ PHYS40182 [SEM2] MPhys Projects .. 138
PHYS40202 Advanced Quantum Mechanics (M) (Option) SEM2 .. 140
PHYS40222 Particle Physics (Option) SEM2 .. 142
PHYS40322 Nuclear Physics (Option) SEM2 .. 144
PHYS40352 Solid State Physics (Option) SEM2 ... 146
PHYS40411 Frontiers of Solid State Physics (Option) SEM1 .. 148
PHYS40421 Nuclear Structure and Exotic Nuclei (Option) SEM1 ... 150
PHYS40422 Applied Nuclear Physics (Option) SEM2 .. 152
PHYS40451 Superconductors and Superfluids (Option) SEM1 .. 154
PHYS40481 Quantum Field Theory (M) (Option) SEM1 ... 156
PHYS40512 Frontiers of Particle Physics 1 (Option) SEM1 ... 158
PHYS40571 Advanced Statistical Physics (M) (Option) SEM1 .. 160
PHYS40580 Laboratory For Students Returning From A Year Abroad (Core) ALL YEAR 162
PHYS40591 Radio Astronomy (Option) SEM1 .. 164
PHYS40612 Frontiers of Photon Science (Option) SEM2 ... 166
PHYS40622 Nuclear Forces and Reactions (Option) SEM2 ... 168
PHYS40631 Laser Photomedicine (Option) SEM1 .. 170
PHYS40652 Physics of Fluids (Option) SEM2 ... 172
PHYS40682 Gauge Theories (M) (Option) SEM2 ... 174
PHYS40692 Stars and Stellar Evolution (C/O) SEM2 ... 176
PHYS40712 Semiconductor Quantum Structures (Option) SEM2 .. 178
PHYS40722 Frontiers of Particle Physics 2 (Option) SEM2 ... 180
PHYS40732 Nuclear Physics (Option) SEM2 ... 182

Syllabuses - Overview

This section lists the syllabuses for the course units taken by undergraduates in the school. Please note:

- Physics units, denoted by PHYSXXXXX, are listed in order of their course code number XXXXX.
- Course units from other schools of the University are listed after the physics units in alphabetical order, together with web addresses for full details.
- Each unit has a credit rating which reflects the effort needed to satisfactorily complete the course. 120 credits are needed for a full year of study.
- A 10 credit unit is expected to require about 100 hours of study in total. Note that some (compulsory) parts of each programme are not credit-weighted.
- Wherever possible syllabuses have been defined from specific textbooks.
- These texts are available in the School Library and in the John Rylands University Library.
• Students will find it useful to purchase some of these texts. However, they are advised to delay any purchase until the beginning of the lecture unit when the lecturer will discuss the merits of the various alternative texts available.
• Pre-requisites in italics are not core courses.
 PHYS10071 Mathematics 1 (Core) SEM1

Prerequisites
A-level Mathematics

Follow-up units
This course is a prerequisite for all subsequent physics core courses

Classes
22 lectures in S1, plus workshops

Assessment
Tutorial work and attendance (5%)
Mid-semester test (10%)
1 hour 30 minutes examination in January (85%)

Recommended texts
Jordan, D. & Smith, P. Mathematical Techniques (OUP)
Tinker, M. & Lambourne, R. Further Mathematics for the Physical Sciences (Wiley)

Supplementary texts
Lambourne, R. & Tinker, M. Basic Mathematics for the Physics Sciences (Wiley)

Feedback
Feedback will be offered by tutors on students’ written solutions to weekly examples sheets, and model answers will be issued.

Aims
To allow students to develop their mathematical competence with functions, calculus, complex numbers, power series, linear algebra and differential equations to a level where they can cope with the demands of the first year of the physics course and beyond.

Learning outcomes
On completion successful students will be able to:

1. understand the properties of different types of functions and be able to sketch them in both 2D cartesian and polar coordinates.
2. integrate and differentiate functions of one variable using a range of techniques and be able to apply integration and differentiation to a range of physical problems.
3. show how smooth functions can be expressed in terms of power series.
4. demonstrate an understanding of the properties of complex numbers and be familiar with some basic complex functions.
5. demonstrate an understanding of matrix notation, carry out matrix algebra and use matrices to solve systems of linear equations.
6. know the properties and applications of determinants, be able to evaluate them, and use them to test for unique solutions of linear equations.

7. solve first and second order ordinary differential equations using a range of techniques.

Syllabus

1. **Functions and 2D coordinates** (2 lectures)
 Properties of functions. 2D and 3D coordinate systems. Index notation, Sketching functions, logarithmic functions.

2. **Complex numbers** (2 lectures)
 Definition, modulus and argument; addition, multiplication, division; roots of quadratic equations; complex numbers in polar form; De Moivre’s theorem; Hyperbolic functions.

3. **Differential Calculus** (3 lectures)
 Review of differentiation, the differential; differentiation of products, functions of functions; maxima, minima and inflexions; partial differentiation; examples and applications from physics.

4. **Power Series** (2 lectures)
 Series, limits of series; binomial expansion; Taylor’s and Maclaurin’s series expansions.

5. **Integral Calculus** (4 lectures)
 Review of integration; integration by parts, substitution, standard integrals, partial fractions and completing the square; simple line integrals; physical applications.

6. **Linear Algebra** (5 lectures)

7. **Ordinary Differential Equations** (4 lectures)
 Physical motivation. 1st order separable. 1st order homogeneous. 1st order linear: integrating factors. 2nd order with constant coefficients. Physical applications.
PHYS10101 Dynamics (Core) SEM1

Prerequisites
A-level Physics and A-level Mathematics

Follow-up units
PHYS10672, PHYS20401

Classes
22 lectures plus 11 workshop sessions in S1

Assessment
15% for 11 on-line assignments: 1.5% per week on a pass/fail basis (required score for pass is 2/3rds of average mark for the assignment with a minimum of 40%), capped at a total of 15%. Mid-semester test (10%) 1 hour 30 minutes examination in January (75%)

Compulsory Text book
Young, H.D. & Freedman, R.A. *University Physics* (Addison-Wesley)

Recommended texts
Forshaw, J.R. & Smith, A.G. *Dynamics & Relativity* (Wiley)
Kleppner, D. & Kolenkow, R. *An Introduction to Mechanics* (McGraw-Hill)
Tipler, P.A., *Physics for Scientists and Engineers* (W.H. Freeman and company)

Supplementary maths text

Feedback
Feedback will be offered by tutors on students’ written solutions to weekly examples sheets, and model answers will be issued.

Aims
To introduce the fundamental concepts of Newtonian mechanics.

Learning outcomes
On completion successful students will be able to demonstrate an understanding of:
1. the concept of a frame of reference and its associated coordinate systems.
2. Newton’s laws and know how to apply them in calculations of the motion of simple systems.
3. the concepts of energy, work, power, momentum, force, impulse, angular velocity, angular acceleration and torque.
4. the concepts of conservation of energy, momentum, and angular momentum and be able to perform calculations using them.
5. the concepts of simple rotation of rigid bodies and be able to perform calculations using them.
6. the concepts of simple motion in a gravitational field and be able to perform calculations using them.

Syllabus

1. Linear Dynamics I
 Differentiation of vectors, velocity and acceleration.
 Inertial frames and Newton I.

2. Linear Dynamics II
 Newton II.
 Equations of motion.
 Impulse.
 Forces.
 Action at a distance.

3. Linear Dynamics III
 Momentum conservation and Newton III.
 Applications of Newtonian mechanics.

4. Linear Dynamics IV
 Conservation principles in physics.
 Kinetic energy and work.
 Potential energy.
 Conservative forces.

5. Rotational Motion I
 Torque, vector product, rotation of coordinate axes and angular momentum.
 Polar coordinates.

6. Conservation laws and isolated systems
 Conservation of linear momentum.
 Internal forces for a collection of particles.
 Centre of mass.

7. Angular momentum
 Angular momentum and Newton II.
 Conservation of angular momentum.
8. **Rotational motion II**
 Equation of motion; kinetic energy, angular momentum, moments of inertia, gyroscopes and precession.

9. **Gravitation**
 Newton’s Law of Gravitation
 Kepler’s Laws of Planetary Motion
 Gravitational Potential Energy
 Escape velocity
 Satellites
 Spherical mass distributions
 Tidal forces
PHYS10121 Quantum Physics and Relativity (Core) SEM1

Prerequisites
A-Level Physics and Mathematics

Follow up units
PHYS10672, PHYS20101 and PHYS20602

Classes
22 lectures in S1

Assessment
Tutorial work and attendance (5%)
Mid-semester test (10%)
1 hour 30 minutes examination in January (85%)

Recommended text
Forshaw, J. R. & Smith, G, Dynamics & Relativity (John Wiley & Sons)
Young, H. D. & Freedman, R.A., University Physics (Addison-Wesley)

Supplementary texts
Cox, B. E. & Forshaw, J. R. Why does E=mc²? (and why should we care?) (Da Capo)
Cox, B. E. & Forshaw, J. R. The Quantum Universe (Allen Lane)
Rindler, W. Relativity: Special, General & Cosmological (Oxford)

Feedback
Feedback will be offered by tutors on students’ written solutions to weekly examples sheets, and model answers will be issued.

Aims
1. To explain the need for and introduce the principles of the Special Theory of Relativity.
2. To develop the ability to use the Special Theory of Relativity to solve a variety of problems in relativistic kinematics and dynamics.
3. To explain the need for a Quantum Theory and to introduce the basic ideas of the theory.
4. To develop the ability to apply simple ideas in quantum theory to solve a variety of physical problems.

Learning outcomes
On completion successful students will be able to:
1. understand the notion of an inertial frame and the concept of an observer.
2. appreciate the failure of classical relativity theory and explain the principles of Special Relativity.
3. understand and use the Lorentz transformation formulae with particular emphasis on the breakdown of simultaneity, time dilation and length contraction.
4. appreciate the role of energy and momentum in a relativistic context.
5. understand the idea of spacetime and the role of four-vectors
6. solve problems in relativistic mechanics.
7. appreciate the failure of classical mechanics and the need for a Quantum Theory.
8. understand and use the ideas of wave-particle duality and the uncertainty principle to solve simple problems in quantum mechanics.
9. Appreciate the existence of atomic spectra and perform simple calculations relating to the quantum behaviour of atoms.
10. have an elementary understanding of the role of the wavefunction in the Quantum Theory.

Syllabus

1. Relativity
 Galilean relativity, inertial frames and the concept of an observer.
 The principles of Einstein's Special Theory of Relativity
 Lorentz transformations: time dilations and length contraction.
 Velocity transformations and the Doppler effect.
 Spacetime and four-vectors.
 Energy and momentum with applications in particle and nuclear physics.

2. Quantum Physics
 Basic properties of atoms and molecules. Atomic units. Avogadro’s number.
 The wavefunction and the role of probability.
 Heisenberg’s Uncertainty Principle and the de Broglie relation.
 The momentum operator and the time-independent Schrödinger equation: the infinite square well.
 Applications in atomic, nuclear and particle physics: energy levels and spectra and lifetimes.
PHYS10180/PHYS10280 First Year Laboratory (Core) ALL YEAR

Aims and Objectives
These are presented in Section 2 of this book.

Prerequisites
A-level Physics, A-level Mathematics

Follow-up courses
Honours Physics students attend Laboratory throughout their three years' study. The First Year Laboratory is an integral part of the overall laboratory course.

Classes
One day per week throughout the session on either Monday or Thursday. Laboratory times are 11.00-1.00 and 2.00-5.00. Attendance is obligatory.

Feedback
Feedback will be offered orally by demonstrators in lab sessions, orally by demonstrators when they mark each experiment and in writing for all lab reports.

Organisation
The first year teaching laboratories are located on the 1st floor (general, optics, vacuum and electrical measurements) and 3rd floor (electronics and computing).

A demonstrator is assigned to each pair of students for the duration of each experiment. The demonstrator gives guidance and instruction and may be consulted at any time during the laboratory hours. Each laboratory has technicians who maintain the equipment and have a pool of special items (such as stopwatches) for loan. The laboratory unit includes packages on Data Analysis PHYS10181B and Special Topics in Physics PHYS10181F, which all students take, and also Geometric Optics PHYS10181, Digital Electronics PHYS10180E and Circuits PHYS10182C if appropriate for a particular degree programme.

Assessment
The demonstrator assesses each pair of students during the course of the experiment by considering physics understanding, experimental results, quality of data analysis, innovation, quality of notes in laboratory book and a short interview at the end. During the year students are required to submit written reports on some of the experiments undertaken. The total laboratory mark for the year is based on the experiments and the written reports.

Interviews on the experiments must be completed by a date defined as two weeks after your final laboratory session in S2 or they will receive zero marks.
The mark for the unit is made up of the following components:

For students taking full year lab (PHYS10180)

7 experiments (56% in total)
3 lab reports (24% in total)
Data Analysis (10%)
Special Topics (10%)

For students taking S1 lab only (PHYS10280)

3 experiments (40% in total)
2 lab reports (20% in total)
Data Analysis (20%)
Special Topics (20%)

Late submissions of lab. Reports

The standard penalties as detailed in Section 9.1 of the Blue Book will apply. “Where a student has a DASS recommended coursework deadline extension, please note that this will only apply to submission of your final (individual) lab report, not to any reports written jointly with your lab partner.”

Students must satisfy the laboratory work and attendance requirements and obtain a pass (i.e. at least 40%) in order to proceed to the second year. Any student who does not submit their final (individual) lab report within 5 days of the submission deadline will be asked to submit a report for formative assessment by the lab tutor, before the start of the resit exam period. The student will receive feedback on their marked report at the start of their second year. Failure to submit such a report will constitute a failure to satisfy the work and attendance requirements and hence the student will not be allowed to proceed to the second year.

Laboratory facilities are not available for resits. A student who has failed may be permitted to submit further assessments, based on laboratory work already carried out, if these are needed to satisfy work and attendance requirements or to pass.
PHYS10180E Digital Electronics (Core) ALL YEAR

Prerequisites
A-level Physics

Follow-up units
PHYS20181E

Classes
Three days laboratory in S1 or S2, which will include lecture material

Assessment
Ten minute interviews on the third day of laboratory.
The credit rating is part of the Laboratory credit rating.

Feedback
Feedback will be offered orally by demonstrators in lab sessions, and orally by demonstrators after the interview.

Aims
To achieve a basic understanding of logic systems and to use this understanding in simple circuit designs.

Learning outcomes
On completion successful students will be able to:

1. show familiarity with basic logic gates, Boolean algebra and binary numbers.
2. understand how particular logical functions may be implemented and to design systems to implement simple truth tables.
3. understand how binary addition may be implemented using logic gates.
4. understand latches and simple memory devices.
5. appreciate the progression from latches to flip-flops and understand the operation of the J-K flip-flop.
6. be able to use and predict the behaviour of simple circuits involving J-K flip-flops.
7. understand excitation tables and be able to use them to design simple cyclic circuits.
PHYS10181B Computing and Data Analysis (Core) ALL YEAR

An introduction to measurement errors, methods of data analysis and interpretation for experimental physics and the basic computing skills required for creating laboratory reports.

Prerequisites
A-level Physics, A-level Mathematics

Classes
1 day in weeks 1, 2 and 3 of S1

Assessment
There will be an online test at the end of the course.
The material is essential for laboratory (PHYS10180/10280).
The credit rating is part of the Laboratory credit rating.

Feedback
Feedback will be offered orally by demonstrators in lab sessions and in writing for the lab report. For the online test, feedback will be provided online.

Recommended texts
A data-analysis summary will be available on the teaching web.

Aims
1. To develop the appropriate skills and confidence to use computers for the tasks required in laboratory work.
2. To introduce the basic concepts and methods required for laboratory data analysis.
3. To develop sound judgement in interpreting experimental results and uncertainties.
4. To develop the skills required for good scientific communication.

Learning outcomes
On completion successful students will be able to:
1. use specific computer applications to manipulate and present experimental data in the form of graphs and tables and to describe experiments in formal written reports,
2. estimate the precision of experimental results, from an understanding of the experimental procedure and from a statistical analysis of repeated measurements,
3. calculate the uncertainty in quantities derived from experimental results of specified precision,
4. use the method of least squares-fitting and interpret chi-squared, χ^2,
5. distinguish between random and systematic errors

Syllabus
1. The standard error and confidence levels.
2. Random and systematic errors.
3. Propagation of errors.
4. Repeated measurements: the mean, standard deviation and Gaussian distribution.
5. Estimating the error on a single measurement.
6. Fitting functions to data: the chi-squared test, χ^2.
7. The weighted average.
8. Manipulating, plotting and fitting data using computer packages.
9. Writing a scientific report.
PHYS10181F Special Topics in Physics (Core) ALL YEAR

Prerequisites
None

Follow up units
PHYS20811/20821

Classes
6 lectures in weeks 1-5 & 7 of S1

Assessment
Peer assessment of a pamphlet produced through group work

Recommended text
Recommended reading will be given by the lecturers

Feedback
Groups will offer one another written feedback.

Aims
1. To promote awareness of selected topics at the forefront of modern-day research in physics.
2. To introduce and develop group-working skills.
3. To enhance writing and written presentation skills.
4. To develop skills in assessing the quality of one’s own and others’ work.

Learning outcomes
On completion successful students will be able to:
1. gather information on a subject which goes substantially beyond that provided in lectures.
2. work in a group to produce a piece of work which promotes physics as an interesting area of study.
3. appreciate the demands of group work.
4. grade their own and other’s work against specified assessment criteria.

Course structure
Students will attend a series of specialist lectures on selected topics at the forefront of modern day research in physics and a session introducing the project and group working. In the weeks following the lectures they will work together in small groups to produce a short booklet on one of the topics discussed in the lectures. The booklet should be designed for students studying A-level physics and aim to convey the excitement of modern-day physics to them. Students will be expected to research beyond the material presented in the lectures in order to produce an informative and attractive piece of work. Each group will assess and grade their own booklet along with a number of booklets from other groups, and these grades will form the basis of the final course assessment.
PHYS10181L Light and Optics (Core) ALL YEAR

Prerequisites
A-level Physics, A-level Mathematics

Classes
Two or three days laboratory will form part of schedule for PHYS10280

Assessment
Each pair of students is allocated a demonstrator who helps and monitors progress throughout the course. The assessment is on-going and students are given their marks after a short interview in the laboratory at the end of the second (or third) day.

Recommended texts
Hecht, E., Optics, (Addison Wesley)

Feedback
Feedback will be offered orally by demonstrators in lab sessions, orally by demonstrators when they mark the experiment, and in writing for lab reports.

Aims
1. To introduce geometric optics and the use of ray diagrams using lenses and mirrors.
2. To understand how simple optical instruments work.

Learning outcomes
On completion successful students will be able to:
1. generate ray diagrams to predict the position and size of images in optical systems.
2. understand and use the mathematical formulae to predict the position and size of images produced by simple lenses.
3. measure the focal length of lenses and mirrors using various methods.
4. understand the origin of spherical and chromatic aberrations in lenses.

Syllabus
1. Produce ray diagrams to predict the position and size of the image produced by simple lenses.
2. Measure the focal length of a simple convex lens by producing an image of a distant object.
3. Calculate the focal length of a simple lens by making measurements of image and object distance and using the lens equation.
4. Calculate the focal length of a simple lens using Bessel’s method.
5. Calculate the focal length of a simple lens by measuring the magnification of the image.
6. Calculate the focal length of a concave lens using the lens equation.
Physics Core Unit
Part of PHYS10180

PHYS10182C Circuits (Core) ALL YEAR

Prerequisites
A-level Physics, PHYS10071, PHYS10302 (1st part)

Classes
Three days laboratory in S2 which will include lecture material

Assessment
Each pair of students is allocated a demonstrator who helps and monitors progress throughout the course. The assessment is on-going and students are given their marks after a short interview in the laboratory at the end of the third day. Theory is examinable as part of PHYS10302 Vibrations and Waves.

Recommended texts
The basic theory is adequately covered in the course script. Any good first year textbook on electromagnetism is suitable for further reading. Some material is also covered in PHYS10071 Mathematics 1 and PHYS10342 Electricity and Magnetism.

Feedback
Feedback will be provided to the students after their assessment interviews for each section that they complete.

Aims
To ensure that students can competently use an oscilloscope and to foster an understanding of the way electrical signals are shaped by passive circuit elements.

Learning outcomes
On completion successful students will be able to:
1. understand the behaviour of capacitors and inductors.
2. observe and understand transients.
3. understand and build integrating and differentiating circuits.
4. observe and understand ringing, damping and Q-factors in resonant circuits, including critical damping.
5. understand and use complex notation and complex impedances for:
 determination of amplitude and phase
 resonant circuits
 low-pass and high-pass filters
 A.C. bridges.

Structure
The course is divided into three parts, each consisting of a number of experimental and theoretical tasks. Students are expected to complete a minimum number of these tasks each day. Slightly more demanding experiments may be done by students who quickly complete the minimum requirement.
An introduction to astronomy with emphasis on the physical processes involved.

Prerequisites
A-level Physics

Follow-up units
PHYS10692 and Astrophysics options in later years

Classes
22 lectures in S1

Assessment
Tutorial work and attendance (5%)
Mid-semester test (10%)
1 hour 30 minutes examination in January (85%)

Feedback
Feedback will be offered by tutors on students’ written solutions to weekly examples sheets, for which model answers will also be issued.

Recommended texts
There is currently no course textbook but references for appropriate background reading will be provided throughout the course. The following text provides useful additional reading:

Aims
To show how the properties of astronomical objects and the Universe relate to simple physical laws and processes

Learning outcomes
On completion successful students will be able to:

1. Have an understanding of the role and physics of detectors and telescopes including geometric optics;
2. Understand how distances are measured;
3. Know how basic laws of physics determine the properties and evolution of stars;
4. Know Kepler's Laws and how they relate to extrasolar planet detection;
5. Understand how the dynamics of galaxies indicate the presence of dark matter;
6. Be able to demonstrate an understanding of the evolution of our Universe, including the evidence for the Big Bang, dark matter and dark energy.
Syllabus

1. **The Universe and its physics:** A tour of the Universe, its scale and contents; Gravity; Pressure; Radiation

2. **Observational astronomy:** the electromagnetic spectrum; geometrical optics; resolving power, and the diffraction limit; telescopes and detectors; gravitational waves

3. **Distances:** parallax measurements, standard candles

4. **Physics of the Sun and Stars:** blackbody radiation, the Planck, Stefan-Boltzmann and Wien laws, effective temperature, interstellar reddening; hydrogen spectral lines and Doppler effect; Hertzprung-Russell diagram; Freefall and Kelvin-Helmholtz time; nuclear fusion; basic stellar structure (hydrostatic equilibrium, equation of state); white dwarfs, neutron stars, and black holes

5. **Planetary systems:** Kepler's laws; Detection methods of extrasolar planets; search for life elsewhere; SETI.

6. **Galaxies:** Star formation and the interstellar medium; stellar populations; the interstellar medium; galaxy rotation curves, mass and dark matter; Galaxy collisions; central engines

7. **Cosmology:** Olber’s paradox, Hubble's Law; the age of the Universe; Evolution of the Universe: Madau diagram; Evidence for the Big Bang (blackbody radiation, nucleosynthesis); dark energy and the accelerating Universe.
PHYS10302 Vibrations and Waves (Core) SEM2

Prerequisites
PHYS10071, A level Physics

Follow-up units
PHYS10182C, PHYS20101, PHYS20171, PHYS20181E, PHYS20312, PHYS20401

Classes
24 lectures in S2

Assessment
Tutorial work and attendance (5%)
1 hour 30 minutes examination in May/June (95%)

Recommended texts
Printed summaries will be downloadable.

Feedback
Feedback will be offered by tutors on students’ written solutions to weekly examples sheets, and model answers will be issued.

Aims
To explore the detailed behaviour of vibrating systems and wave motion in many different physical systems.

Learning outcomes
On completion successful students will be able to:
1. demonstrate understanding of the behaviour of oscillating systems and wave motion.
2. use the mathematical formalism that describes them.
3. recognise examples across many areas of physics.

Syllabus
2. Damped SHM, Q values and power response curves.
3. Forced SHM, resonance and transients.
5. Waves. The 1-D wave equation.
7. The wave equation in 2-D and 3-D. Superposition.
9. Interference and diffraction.

Examples of vibrating systems and waves will be given in the lectures and on the problem sheets.
PHYS10342 Electricity and Magnetism (Core) SEM2

Prerequisites
A-level Physics, PHYS10071

Follow-up units
PHYS20141, PHYS30141, PHYS30441

Classes
24 lectures plus workshops in S2

Assessment
Tutorial work and attendance (5%)
1 hour 30 minutes examination in May/June (95%)

Recommended texts
Grant, I. S. & Phillips, W. R. *Elements of Physics* (OUP)
Tipler, P. A., *Physics for Scientists and Engineers* (Freeman)
Young, H. D. & Freedman, R. A. *University Physics* (Addison-Wesley)

Supplementary and Further Reading (See comments in lectures)
Dobbs, E. R. *Basic Electromagnetism* (Chapman-Hall)
Duffin, W. J. *Electricity and Magnetism* (McGraw-Hill)
Feynman, *Lectures in Physics Volume 11*
Grant, I. S. & Phillips, W. R. *Electromagnetism* (Wiley)
Griffiths, D. J. *Introduction to Electrodynamics* (Wiley)
Schey, H. M. *Div, Grad, Curl and All That* (Norton)

Feedback
Feedback will be given by tutors on students’ written solutions to examples sheets and model answers will be issued.

Aims
To develop a basic understanding of electric and magnetic fields in free space using the integral forms of Maxwell’s laws.

Learning outcomes
On completion successful students will be able to:
1. describe the electric field and potential, and related concepts, for stationary charges.
2. calculate electrostatic properties of simple charge distributions using Coulomb’s law, Gauss’s law and electric potential.
3. describe the magnetic field for steady currents and moving charges.
4. calculate magnetic properties of simple current distributions using Biot-Savart and Ampère’s laws.
5. describe electromagnetic induction and related concepts, and make calculations using Faraday and Lenz’s laws.
6. describe the basic physical content of Maxwell’s laws in integral form.

Syllabus

1. Introduction
 Forces in nature; electric charge and its properties; vectors, fields, flux and circulation.

2. Electric Fields and Stationary Charges
 Coulomb’s law and superposition; electric field and potential; capacitance; electric dipoles; energy in electric fields.

3. Magnetic Fields and Steady Currents
 Magnetic fields; Lorentz force; Biot-Savart and Ampère’s laws; magnetic dipoles.

4. Electrodynamics
 Electromotive force; electromagnetic induction; Faraday and Lenz’s laws; inductance; energy in magnetic fields.

5. Maxwell’s Equations
 Maxwell’s fix of Ampère’s law; Maxwell’s equations in integral form.
PHYS10352 Properties of Matter (Core) SEM2

Prerequisites: PHYS10071, PHYS10121
Co-requisite: PHYS10372

Follow-up units: PHYS20252, PHYS20352, PHYS40352, PHYS40451, PHYS40752

Classes: 24 lectures in S2

Assessment:
- Tutorial work and attendance (5%)
- 1 hour 30 minutes examination in May/June (95%)

Recommended texts:
- Young, H.D., Freedman, R. University Physics (Addison-Wesley)

Supplementary texts:
- Flowers, B.H., Mendoza, E. Properties of Matter (Wiley)

Feedback
Feedback will be offered by tutors on students’ written solutions to weekly example sheets, and model answers will be issued.

Aims
1. To show how the properties of macroscopic bodies can be derived from the knowledge that matter is made up from atoms.
2. To develop the ideas of classical thermodynamics.

Learning outcomes
On completion successful students will be able to demonstrate an understanding of:

1. Techniques for finding appropriate averages to predict macroscopic behavior;
2. How these techniques are applied to the calculation of the properties of matter;
3. The first and second laws of thermodynamics, and of the concept of entropy;
4. The fundamental thermodynamic relation and its derivation;
5. The use of the formalism of thermodynamics and its application to simple systems in thermal equilibrium.
Syllabus

1. Solids and liquids [6 lectures]
 - Interactions between atoms: interatomic potentials and chemical bonding.
 - Introduction to crystal structure and Bragg’s Law.
 - Elasticity, Young, shear and bulk moduli.
 - Bernoulli’s equation and incompressible fluid flow.
 - Viscosity.

2. Kinetic theory of gases [6 lectures]
 - Ideal and van der Waals gases.
 - Boltzmann factor.
 - Maxwell velocity distribution.
 - Transport properties.

3. Thermodynamics [10 lectures]
 - The First Law: heat, work and internal energy. Functions of state. Reversibility
 - The Second Law: from heat engines to entropy.
 - Phase transitions: Gibbs energy, Clausius-Clapeyron equation, examples of phase transitions.
Mathematics 2

Prerequisites
PHYS10071

Follow up units
PHYS20141, PHYS20171, PHYS20672, MATH20502

Classes
24 lectures in S2, plus workshops

Assessment
Tutorial work and attendance (5%)
1 hour 30 minutes examination in May/June (95%)

Recommended texts
Jordan, D. & Smith P. *Mathematical Techniques*, 2nd ed. (OUP)
Riley, K. F., Hobson, M. P. and Bence, S. J. *Mathematical Methods for Physics and Engineering*
Schey, H. M. *Div, Grad, Curl and All that*, 2nd ed. (Norton)

Feedback
Feedback will be offered by tutors on students’ written solutions to weekly examples sheets, and model answers will be issued. Interactive feedback will be offered during the Workshop sessions.

Aims
To acquire the skills in vector calculus needed to understand Electromagnetism, Fluid and Quantum Mechanics. To acquire an introductory understanding of Fourier Series and their use in physics.

Learning outcomes
On completion successful students will be able to:
1. Appreciate the concepts of scalar and vector fields.
2. Know the properties of div, grad and curl and be able to calculate the divergence and curl of vector fields in various coordinate systems.
3. Calculate surface and volume integrals in various coordinate systems.
4. Calculate flux integrals and relate them to the divergence and the Divergence Theorem.
5. Calculate line integrals and relate them to the curl and to Stokes’ Theorem.
6. Apply the methods of vector calculus to physical problems.
7. Calculate the Fourier series associated with simple functions and apply them to selected physical problems.
Syllabus

1. **Differentiation and integration with multiple variables** (6 lectures)

2. **Vector operators: div, grad and curl** (6 lectures)

3. **The Divergence Theorem, Stokes Theorem, conservative forces** (7 lectures)

4. **Introduction to Fourier Series** (3 lectures)
PHYS10461 Physics in Everyday Life (Option) SEM1

Prerequisites
A-level Physics and A-level Mathematics

Follow up units
Many topics will be met again in physics core and option modules

Classes
22 lectures in S1

Assessment
1 hour 30 minutes examination in January

Recommended text
There is no single recommended text. Where appropriate, examples will be taken from Young, H.D. and Freedman, R.A. *University Physics* (Addison Wesley)

Supplementary reading
Regular issues of New Scientist and Scientific American

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims
To use physics to explain a variety of phenomena and devices in everyday life

Learning outcomes
On completion successful students will be able to:

1. use the method of dimensions to help solve problems in physics
2. demonstrate an understanding of orders of magnitude and estimating
3. use physics to account for various everyday atmospheric phenomena
4. demonstrate an understanding of the physics underlying various aspects of the human body, including sight and hearing
5. demonstrate an understanding of how physics can be applied to sport
6. explain the physics behind a number of devices in modern technology
Syllabus

1. **Everyday life in context** (2 lectures)
 Units, length, energy and time scales in physics; the method of dimensions; estimating; ordering of magnitude.

2. **Physics in the Earth’s atmosphere** (6 lectures)
 The Sun; the Earth’s atmosphere as an ideal gas; pressure, temperature and density; Pascal’s Law and Archimedes’ Principle; Coriolis acceleration and weather systems; Rayleigh scattering; the blue sky; the red sunset; refraction and dispersion of light; the rainbow.

3. **Physics in the human body** (5 lectures)
 The eyes as an optical instrument; vision defects; Rayleigh criterion and resolving power; sound waves and hearing; sound intensity; the decibel scale; energy budget and temperature control.

4. **Physics in sports** (5 lectures)
 The sweet spot; dynamics of rotating objects; running, jumping and pole vaulting; motion of a spinning ball; continuity and Bernoulli equations; Bending it like Beckham; the Magnus force; turbulence and drag.

5. **Physics in technology** (4 lectures)
 Microwave ovens; the Lorentz force; the Global Positioning System; CCDs; lasers; displays
PHYS10471 Random Processes in Physics (M) (C/O) SEM1

Prerequisites
A-level Physics and A-level Mathematics

Follow-up units
Theoretical Physics units

Classes
22 lectures in S1

Assessment
1 hour 30 minutes examination in January.

Recommended texts
A suitable introduction to probability can be found in:
Chapters 39 and 40 of Mathematical Techniques, 3rd edition, Jordan, D. & Smith, P.
Chapter 3 of Statistics, Barlow, R.J.

Feedback
Feedback will be available on students’ individual written solutions to examples sheets which will be marked and model answers will be issued, and through an optional mid-semester test.

Aims
To introduce and develop the mathematical skills and knowledge needed to understand and use probability theory in physics.

Learning outcomes
On completion of the course, students will be able to:
1. understand the fundamentals of probability theory.
2. set up and solve models of physical processes involving randomness.
3. understand the significance of the important probability distributions that are used by physicists.
Syllabus

1. **Elements of probability** (4 lectures)
 - Introduction: What is probability?
 - How to calculate probabilities: permutations and combinations
 - Conditional probability

2. **Probability distributions** (3 lectures)
 - Discrete random variables; expectation value and variance
 - Example: the geometric distribution
 - Continuous random variables; the probability density function
 - Examples: the uniform distribution; the normal (or Gaussian) distribution

3. **Exponential Probability Distribution** (4 lectures)
 - Probability of radioactive decay
 - Probability of collisions in a gas; mean free path
 - Generalisation: “hazard rate” and survival probability

4. **Poisson Probability Distribution** (5 lectures)
 - Probability of occurrence of \(n \) random events
 - Properties of the Poisson distribution
 - Gaussian limit of the Poisson distribution

5. **Binomial Probability Distribution** (6 lectures)
 - Binomial distribution for \(n \) trials
 - Irreversible expansion of a gas
 - Poisson and Gaussian limits of the binomial distribution
 - Random walks and diffusion
PHYS10622 Physics of Energy Sources SEM2

Prerequisites
PHYS10121, PHYS10071

Follow-up units
PHYS40322, PHYS40422

Classes
24 lectures in S2 or S4

Assessment
1 hour 30 minutes examination in May/June

Recommended texts
Krane K. S. *Introductory Nuclear Physics*, (Wiley 1987)
Lilley, J. *Nuclear Physics Principles and Applications* (Wiley 1997)
Twidell, J. W. & Weir, A. D. *Renewable energy resources*, (Spon 1986)

Background reading
Bennet, D.J. & Thompson, J.F. *Elements of nuclear power*, (Longman 1989)

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims
To understand the physical background and mechanisms associated with power generation and related issues.

Learning outcomes
On completion successful students will be able to:
1. understand the forms of energy, its production, transport and storage
2. understand basic nuclear physics and interactions with matter
3. understand the conditions necessary for sustainable chain reactions in fissile material
4. understand the design criteria for the control of a nuclear reactor
5. understand the principles of nuclear fusion useful in power generation and stellar fusion
6. understand physical ideas and issues associated with renewable forms of energy
Syllabus

1. **Introduction – Geopolitical background**
 Energy requirements, consumption. Government policy.
 (1 lecture)

2. **Pre-nuclear energies**
 Forms of energy, dependence on fossil fuels.
 Energy transformation – Power plant.
 (3 lectures)

3. **Basic Nuclear Physics**
 The atom. Radioactivity and decay laws.
 Interaction of radiation with matter.
 (5 lectures)

4. **Nuclear Fission**
 Characteristics of nuclear fission.
 Chain reaction dynamics. Critical mass.
 Reactor types, control, stability and accidents.
 Current status of nuclear fission as a power source.
 (5 lectures)

5. **Nuclear Fusion**
 Principle and energetics of nuclear fusion (in stars and on Earth).
 Thermonuclear fusion, ignition and the Lawson criterion.
 Current status of nuclear fusion as a power source.
 (3 lectures)

6. **Renewable Energy Sources**
 Energy transportation and storage.
 Wind, solar, wave, geothermal and hydro power.
 Fuel cells and efficiencies in heating/insulating buildings.
 Transport, hybrid vehicles and the hydrogen economy.
 Impact of energy uses on ecosystems.
 Research into renewable energy sources.
 (6 lectures)
PHYS10672 Advanced Dynamics (M) (C/O) SEM2

Prerequisites
PHYS10071, PHYS10101, PHYS10121

Follow-up courses
PHYS20401, PHYS30441, PHYS30201, PHYS40202, PHYS40481, PHYS40771, PHYS40992.

Classes
24 lectures in S2 or S4

Assessment
1 hour 30 minutes examination in May/June

Recommended texts
Forshaw, J. & Smith, A. G. *Dynamics and Relativity*, (Wiley)
Marion, J. B. & Thornton, S. T. *Classical Dynamics of Particles and Systems*, (Academic)

Feedback
Feedback will be provided via solutions to the problem sheets, which will be made available electronically on Teachweb and Blackboard. More detailed feedback will be provided in the exercise class which are integrated within the 24 lectures.

Aims
To enhance knowledge and understanding of classical mechanics and relativity.

Learning outcomes
On completion successful students will be able to:
1. know Newton’s theory of gravitation and to apply it to problems of planetary motion and space travel.
2. use inertial forces to explain motion from the viewpoint of rotating frames of reference.
3. know the general relation between the angular velocity and angular momentum of a rigid body, and to solve problems in rotational dynamics.
4. solve problems in relativistic dynamics using energy-momentum four vectors.
Syllabus

1. **Preliminaries** (3 Lectures)
 - Newton’s laws of motion
 - Linear and angular momentum, force and torque
 - The two-body system

2. **Gravitation** (6 Lectures)
 - Force fields and potentials
 - Newtonian gravity
 - Kepler’s motion in a central force field
 - Particle orbits as conic sections and Kepler’s laws

3. **Noninertial Frames of Reference** (3 Lectures)
 - Motion in rotating frames
 - Centrifugal and coriolis forces

4. **Rigid-Body Motion** (6 Lectures)
 - Angular velocity and angular momentum vectors
 - Moment-of-inertia tensor
 - Principal moments of inertia
 - Euler’s equations
 - Free rotation and stability
 - Gyrosopes

5. **Relativistic Dynamics** (6 Lectures)
 - Principles of special relativity
 - The covariant formalism
 - Lorentz transformations and relativistic invariance
 - Relativistic momentum and energy
 - Applications to relativistic kinematics
PHYS10692 Physics of the Solar System (C/O) SEM2

Prerequisites
A-level Mathematics, PHYS10071 or equivalent, PHYS10191

Follow-up units
Astronomy and astrophysics options in years 2, 3 and 4

Classes
24 lectures in S2 or S4

Assessment
1 hour 30 minutes examination in May/June

Useful references

Feedback
Students will receive feedback on a number of optional tutorial sheets.

Aims
To show how many Solar System phenomena may be understood in terms of the physics already known to first year students.

Learning outcomes
On completion successful students will be able to:

1. give a qualitative description of the Solar System and to know how the current picture emerged.
2. apply dynamical principles to understand phenomena such as tides and orbits in the Solar System.
3. make simple orbit calculations, based on energy and angular momentum conservation. Understand the basis of Kepler's laws and the Virial Theorem.
4. know what may be deduced about the Sun by considering it as a black body and body in hydrostatic equilibrium.
5. explain the basic principles behind the energy generation in the Sun.
6. gain some knowledge of planetary atmospheres and to understand the origin of the Earth's greenhouse effect.
7. gain some simple knowledge of the internal constitution of the planets.
8. know how planetary ring systems may be formed.
9. know the consequences of impacts in the Solar System.
10. understand in outline how the Solar System is thought to have formed and evolved.
Syllabus

1. **Overview of the Solar System**
 General description and inventory. Coordinates and time keeping.

2. **Gravity**
 Kepler’s laws and Newton’s law of gravity. Properties of orbits.
 The virial theorem. Tidal forces and tidal friction. Evolution of the Moon.

3. **The Sun**
 Freefall time scale and Kelvin Helmholtz time scale. Hydrostatic equilibrium.
 Nuclear reactions; Neutrinos. Helioseismology.

4. **Planetary atmospheres**
 Albedo and optical depth. Scale height; Escape. Reducing and oxidising atmospheres; Greenhouse effect;
 Ice ages.

5. **Planetary surfaces**
 Impact craters. Isotope dating.

6. **Planetary interiors**
 Liquid cores; Heat generation;

7. **The formation of the solar system**
NEW PHYS10792 Statistical Methods of Data Analysis (Option) SEM2

Prerequisites:
Follow up units:
Classes: 24 lectures in S2
Assessment: Online example sheets (15%)
1 hour 30 minutes examination in May/June (85%)

Recommended texts:
Cowan, G., *Statistical Data Analysis*, Oxford

Feedback
Feedback is through exercises (via online feedback) and the exam.

Aims
- To introduce basics of statistical methods and modern day advanced data analysis techniques, as required in all fields working with data.
- To deepen the understanding of how data analysis works for small and large data samples.
- To obtain a comprehensive set of tools to analyse data.

Learning outcomes
On completion successful students will be able to:

1. Demonstrate an understanding of the basics of the statistical analysis of data.
2. Explain methods of data analysis and their idea.
3. Apply a set of analysis techniques as required for basic and advanced datasets.
4. Critically assess new results derived from datasets.
5. Use the knowledge of statistical data analysis to understand more advanced and new techniques.

Syllabus

1. Errors, Probabilities, and Interpretations; basics of presentation of data, mean, spread
2. Probability distributions
3. Monte Carlo basics
4. Parameter Estimation
5. Maximum Likelihood + extended maximum likelihood
6. Least Square, chi2, correlations, Best Linear Unbiased Estimator
7. Probability and Confidence level
8. Hypothesis testing
9. Goodness of fit tests
10. Limit setting
11. Introduction to Multivariate Analysis Techniques
12. Basics of Unfolding
PHYS20101 Introduction to Quantum Mechanics (Core) SEM1

Prerequisites
PHYS10071, PHYS10101, PHYS10302
PHYS20171 is recommended as co-requisite

Follow-up courses
PHYS20252, PHYS20352, PHYS30101, PHYS30201, PHYS40202

Classes
22 lectures in S3

Assessment
Tutorial work and attendance (5%)
1 hour 30 minutes examination in January (95%)

Recommended texts
Phillips, A.C. Introduction to Quantum Mechanics (Wiley)
French, A.P. & Taylor, E.F. An Introduction to Quantum Physics (Thomas Nelson)

For general background reading
ed. Manners, J. Quantum Physics: an Introduction (IOP in association with the Open University)

Feedback
Feedback will be offered by tutors on students’ written solutions to weekly example sheets, and model answers will be issued.

Aims
To introduce the fundamental ideas of quantum mechanics that are needed to understand atomic physics.

Learning outcomes
On completion successful students will be able to:
1. demonstrate an understanding of how quantum states are described by wave functions.
2. solve the Schrödinger equation and describe the properties of a particle in simple potential wells.
3. solve one-dimensional problems involving transmission, reflection and tunnelling of quantum probability amplitudes.
4. demonstrate an understanding of the significance of operators and eigenvalue problems in quantum mechanics.
5. demonstrate an understanding of angular momentum in quantum mechanics.
6. demonstrate an understanding of how quantum mechanics can be used to describe the hydrogen and helium atoms.
Syllabus

1. **Basic Elements of Quantum Mechanics** (2 lectures)
 Schrödinger equation, the wave function, position and momentum observables (expectation values and uncertainties), energy observable and time (time independent Schrödinger equation and time evolution).

2. **Commutators and compatibility** (2 lectures)
 Operators and quantum states, commutation relations and compatibility of different observables.

3. **Infinite square well potential** (2 lectures)
 Stationary states and non-stationary states.

4. **Finite wells, potential steps and barriers** (3 lectures)
 Boundary conditions at a potential step, bound states in a finite well, reflection and transmission by a finite step, and by a barrier, tunnelling.

5. **The harmonic oscillator potential** (2 lectures)
 Stationary states, vibrational states of a diatomic molecule.

6. **Orbital angular momentum** (5 lectures)
 Particle in two dimensions (eigenfunctions and eigenvalues of L_z), particle in three dimensions (eigenfunctions and eigenvalues of L^2 and L_z), rotational states of a diatomic molecule.

7. **Particle in a central potential** (2 lectures)
 Motion according to classical physics, quantum states with certain E, L^2 and L_z, and the radial time-independent Schrödinger equation, energy levels and eigenfunctions for the Coulomb potential.

8. **Hydrogen Atom** (2 lectures)
 Energy levels, size and shape of energy eigenfunctions, effect of finite mass of nucleus, EM spectrum, hydrogen-like systems.

9. **Electron spin, identity and Pauli Exclusion Principle** (2 lectures)
PHYS20141 Electromagnetism (Core) SEM1

Prerequisites
PHYS10071, PHYS10342, PHYS10372

Follow-up units
PHYS20312, PHYS30141, PHYS30441

Classes
22 lectures in S3

Assessment
Tutorial work and attendance (5%)
1 hour 30 minutes examination in January (95%)

Recommended texts
Grant, I.S. & Phillips, W.R. Electromagnetism (2nd ed.) (Wiley)

Useful references
Lorrain & Corson, Electromagnetic Fields and Waves (3rd ed.) (W.H. Freeman & Co.)
Jackson, J.D. Classical Electrodynamics (3rd ed.) (Wiley)

Feedback
Feedback will be offered by tutors on students’ written solutions to weekly example sheets, and model answers will be issued.

Aims
To introduce Maxwell’s equations and use them to derive properties of electromagnetic waves; to introduce simple models for the interaction of electromagnetic fields with matter.

Learning outcomes
On completion successful students will be able to:

1. know and demonstrate an understanding of Maxwell's equations and their derivation from the empirical laws of electromagnetism.

2. use the fundamental laws of electromagnetism to solve simple problems of electrostatics, magnetostatics and electromagnetic induction in a vacuum.

3. understand how to formulate Maxwells laws in the presence of simple materials and solve simple problems involving them.
4. know and understand the electromagnetic boundary conditions which apply at the interface between two simple media, and to use them to solve simple problems.

5. demonstrate understanding of the properties of plane electromagnetic waves in a vacuum and in simple media and to be able to derive these properties from Maxwell’s equations.

Syllabus

1. **Mathematical Preliminaries** (2 lectures)
 Revision of Vector Calculus; Dirac δ-function and point particles; Laplace’s & Poisson’s equations and their uniqueness theorem.

2. **Maxwell’s equations in a vacuum** (7 lectures)
 Continuity equation; Integral forms of Maxwell’s equations; Differential forms of Maxwell’s equations; Potential formulation; Electrostatics and magnetostatics as the time independent limit; Calculation of field configurations; Electric and magnetic dipoles; Connections between electromagnetism and special relativity.

3. **Electromagnetic effects in simple materials** (8 lectures)
 Conductors: mechanisms for conduction; the method of images and the motion of particles near a conductor. Dielectrics: capacitance, relative permittivity; polarization & electric susceptibility; mechanism for polarization; electrostatics in a dielectric; Interfaces between dielectrics. Magnetism: inductance & permeability; magnetization & magnetic susceptibility; diamagnetism and paramagnetism; magnetostatics. Ferromagnetism: ideal ferromagnets; hysteresis.

4. **Electromagnetic waves** (5 lectures)
 Maxwell’s equations in free space; Plane waves; Wave solutions for E & B fields; Poynting vector, irradiance & radiation pressure; Polarization of EM waves; Reflection of EM waves at a perfect conductor; EM waves in the presences of a current; EM waves in a dielectric.
PHYS20161 Introduction to Programming for Physicists (Core) SEM1

Prerequisites
None

Follow-up units
PHYS20762, PHYS30762

Classes
10 lectures plus 10 half-day laboratory sessions in S3

Assessment
Weekly programming tasks continually assessed in the laboratory sessions by demonstrators and a final task assessed by the lecturer.

Note: Laboratory facilities are not available for resits. A student who has failed may be permitted to submit further assessments, based on laboratory work already carried out, in order to pass the course unit.

Recommended texts will be discussed by the lecturer at the first lecture.

Feedback
Feedback is offered orally by demonstrators in the lab.

Aims
The aim of the course is to give a practical introduction to computer programming for physicists assuming little or no previous programming experience.

Learning outcomes
On completion successful students will:
1. Be able to write programs in Python and C++ to aid them in practical situations they will face in their degree course and future work in physics or in other fields.

2. Have an understanding of programming appropriate to writing code in Python and C++, but also be able to transfer this understanding to other languages.

Syllabus

The Use of Programming:
1. Analysing, manipulating and visualising data.
4. Optimisation.
5. Construction of computational models.
Elements of Programming:
1. Variables and organising data.
2. Operators and input/output.
3. Conditional expressions and loops.
4. Structuring and designing programs.
5. Debugging and testing.
PHYS20171 Mathematics of Waves and Fields (Core) SEM1

Prerequisites
PHYS10071, PHYS10302, PHYS10372

Follow-up units
PHYS30101, PHYS30201, PHYS30141, PHYS30441, PHYS30672

Classes
22 lectures in S3

Assessment
Tutorial work and attendance (5%)
1 hour 30 minutes examination in January (95%)

Recommended texts
Stephenson, G. Partial differential equations for scientists and engineers (Imperial College 1996)

Aims
To introduce and develop the mathematical skills and knowledge needed to understand classical fields and quantum mechanics.

Feedback
Students will receive feedback on their work and performance in this module as a component of their weekly tutorial meeting with their academic tutor.

Learning outcomes
On completion successful students will be able to:
1. solve partial differential equations using the method of separation of variables.
2. define the term “orthogonality” as applied to functions, and recognise sets of orthogonal functions which are important in physics (e.g. trigonometric functions and complex exponentials on appropriate intervals, Legendre polynomials, and spherical harmonics).
3. represent a given function as a linear superposition of orthogonal basis functions (e.g. a Fourier series) using orthogonality to determine the coefficients.
4. state how a Fourier transform differs from a Fourier series, and calculate Fourier transforms of simple functions.
5. solve eigenvalue problems (differential equations subject to boundary conditions) either in terms of standard functions or as power series.

6. use sets of eigenfunctions as basis functions.

7. use partial differential equations to model wave, heat flow and related phenomena.

8. make basic use of Dirac notation.

Syllabus

1. **Wave problems in one dimension**
 - Separation of variables
 - Normal modes of a string: eigenfunctions and eigenvalues
 - General motion of a string

2. **Fourier series**
 - Orthogonality and completeness of sines and cosines
 - Complex exponential form of Fourier series

3. **Other PDE’s**
 - Laplace’s equation
 - The heat-flow equation

4. **Integral transforms**
 - Fourier transform
 - Convolutions
 - Wave packets and dispersion

5. **Special functions**
 - Orthogonal sets of eigenfunctions
 - Series solution of differential equations
 - Legendre polynomials and related functions
 - Bessel functions

6. **Problems in two and three dimensions**
 - Normal modes of a square membrane; degeneracy
 - Wave guide
 - Normal modes of circular and spherical systems
Heat flow in circular and spherical systems
Laplace’s equation: examples in cartesian and polar coordinates

7. **Dirac notation**
 - Vector spaces
 - Ket notation
 - Inner products and Bras
 - Hilbert spaces
PHYS20180/ PHYS20280 Second Year Laboratory (Core) ALL YEAR

Aims and Objectives
These are presented in Section 2 of this booklet.

Prerequisites
First Year Physics Core, PHYS10180/10280 or equivalent.

Follow-up unit
PHYS30180 / PHYS30280

Classes
One day per week on either Tuesday or Friday throughout the session.
Laboratory times are 10.00-5.00.
There may be reduced supervision over the lunch break, 1.00-2.00.

Attendance is obligatory.

Organisation
The second year teaching laboratory is located on the fourth floor and hosts experiments on general physics, electricity and magnetism, optics, vacuum and astrophysics. Nuclear physics experiments are located on the second floor and the electronics laboratory is on the third floor.

The laboratory unit includes Amplifiers and Feedback PHYS20181E if appropriate for a particular degree programme.

There are 20 laboratory days during the year and seven or eight experiments are performed. There is a mix of experiments designed to last approximately 2, 3 or 4 days.

Four Laboratory Reports (word processed) are required during the year. Submission dates will be posted well in advance and late reports will be penalised.

Feedback
During the conduct of the experiment, oral advice will be given throughout by demonstrators.

During interviews, advice on how to improve the measurement, analysis and presentation of results will be given orally and also written on the assessment sheets, copies of which will be given to the student.
In written reports, detailed comments on how the report might be improved are written on the reports. More general comments are written on the marked sheets, copies of which are returned to the students along with the marked reports. Students are strongly encouraged to collect their marked reports from the markers, when any written comments can be elaborated upon.

Assessment

Student performance on each experiment is assessed by the demonstrator/supervisor during the course of the experiment and by a final interview. Assessment takes into account: physics understanding, experimental skill and results, quality of data analysis, error analysis and final results, innovation, commitment, planning and quality of notes in Laboratory Notebook. For some of the experiments the interview includes a short oral presentation.

The relative weights are: each 2-day experiment (20), each 3-day experiment (30), each 4-day experiment (40), Laboratory reports (20, 20, 30, 30).

Late submissions of lab. Reports

The standard penalties as detailed in Section 9.1 of the Blue Book will apply.

Late interview

Late penalties will be incurred if an interview is more than one week late. Interviews on S3 experiments must be completed by the end of week 2 of S4 or they will receive zero. Similarly interviews on S4 experiments must be completed by the end of week 13.

Students must satisfy the laboratory work and attendance requirements and obtain a pass (i.e. at least 40%) in order to proceed to the third year. Laboratory facilities are not available for resits. A student who has failed may be permitted to submit further assessments, based on laboratory work already carried out, if these are needed to satisfy work and attendance requirements or to pass.
Phys20181E Amplifiers and Feedback (Core) All Year

Prerequisites
PHYS10302, PHYS10182C

Follow-up units
None

Classes
2 two-hour lectures and 3 days laboratory in S3
Each laboratory session will be preceded by a lecture describing the theoretical details of the experiments

Assessment
Laboratory interview on completion of course.
The credit rating is part of the laboratory credit rating.

Feedback
Laboratory pairs will be allocated, and supported by, a demonstrator who will monitor progress and provide continuous feedback. Detailed feedback, with respect to the Learning Outcomes, will be provided after the assessment interview.

Aims
To understand how analogue signals may be amplified, manipulated and generated in a controlled manner, and how they may be interfaced to digital systems for subsequent processing.

Learning outcomes
On completion successful students will be able to:
1. understand the behaviour of an ideal amplifier under negative feedback.

2. apply the developed theory to simple circuits; adders, integrators and phase shifters (requiring complex number analysis).

3. understand the limitations of a real amplifier in terms of its gain, bandwidth, and input/output impedance.

4. understand positive feedback, especially the Schmitt trigger.

5. understand basic methods of ADC (analogue-to-digital conversion) and be able to build 2-bits ADC.

Syllabus
1. Elementary circuit theory – discrete components, Kirchoffs laws and complex analysis

2. Semiconductor amplifiers – real and ideal systems
3. Positive feedback, oscillators and control loops

4. Analogue-to-digital conversion
PHYS20252 Fundamentals of Solid State Physics (Core) SEM2

Prerequisites: PHYS20101, PHYS10302, PHYS10352, PHYS10372

Follow-up units: PHYS30151, PHYS40352, PHYS40451, PHYS40712, PHYS40752

Classes: 24 lectures in S4

Assessment: Tutorial work and attendance (5%)
1 hour 30 minutes examination in May/June (95%)

Recommended texts:
De Podesta, M. Understanding the Properties of Matter, 2nd ed (Taylor & Francis)
Hook, J.R. & Hall, H.E. Solid State Physics, 2/e (Wiley)

Feedback
Feedback will be offered by tutors on students’ written solutions to weekly examples sheets, and model answers will be issued.

Aims
To introduce models which describe the structure, properties and interactions of one-electron and many-electron atoms. To introduce the fundamental principles of solid state physics, taking wave motion in a crystal as the unifying concept; the waves include X rays, lattice vibrations and de Broglie waves of electrons. To show how the form of the electron wave functions, their energies, and their occupation by electrons help us to understand the differences between metals, insulators and semiconductors.

Learning outcomes
On completion, successful students will be able to:
1. demonstrate a detailed understanding of the quantum-mechanical description of one-electron and multi-electron atoms

2. demonstrate an understanding of wave motion in periodic structures leading to an understanding of the temperature dependence of specific heat, as well as being able to calculate the phonon dispersion relation for a chain of atoms;

3. show an understanding of how electron wave functions and energies are changed by the presence of the periodic crystal potential;
4. explain how the electrical properties of metals, insulators and semiconductors are related to their electronic structure.

5. demonstrate an understanding of the functionality of the p-n junction

Syllabus

1. **One-electron Atoms** (3 lectures)

2. **Multi-electron atoms** (3 lectures)

3. **Molecules** (2 lectures)
 Molecular orbital theory applied to covalent bonding. H_2^+ ion. Hydrogen molecule.

4. **Crystal Bonding & Structure** (3 lectures)
 Van der Waals, ionic, covalent and metallic bonding and their relation to crystal structure. Lattice, basis and unit cell. Some common 2D and 3D crystal structures. Diffraction of waves by a crystal, Bragg’s Law.

5. **Fermi-Dirac distribution** (2 lectures)
 Effects of exchange antisymmetry for electrons in solids at zero temperature and low temperatures. Free-electron model of a metal; states of free electrons; density of states and Fermi surface; the metallic bond. The Fermi-Dirac distribution function.

6. **Lattice vibrations** (4 lectures)
 Einstein model of specific heat. Vibrations of a one-dimensional chain of atoms. Diatomic chain; optical and acoustic modes. Extension to three dimensions; the [first] Brillouin zone; transverse and longitudinal modes. Quantized lattice vibrations [phonons]; crystal momentum of phonons. Debye model of specific heat.

7. **Electrons in solids** (3 lectures)
 Weidemann-Franz Law. Electrical and thermal conductivity: scattering of electrons from crystal defects and phonons. Quantum description of electronic heat capacity.
8 Interaction of electrons with crystal lattice
Wave functions of electrons in a one-dimensional crystal; crystal momentum. Modification of free-electron dispersion relation; energy bands and band gaps. Classification of solids by their electrical properties at zero temperature: metals and insulators. Semi-classical dynamics of electrons; effective mass; holes. Hall effect.

9 Semiconductors
Intrinsic and extrinsic semiconductors, donors and acceptors, p-n junction, light emitting diode, solar cell, quantum dots.
PHYS20312 Wave Optics (Core) SEM2

Prerequisites
PHYS20141, PHYS20171

Follow-up units
PHYS30611, PHYS40612, PHYS46111

Classes
24 lectures in S4

Assessment
Tutorial work and attendance (5%)
1 hour 30 minutes examination in May/June (95%)

Recommended texts

Hecht, E., *Optics*, (Addison Wesley)

Smith, F.G. & King, T.A. *Optics and Photonics - An Introduction* (Wiley)

Further Reading

Feedback

Feedback will be offered by tutors on students’ written solutions to weekly examples sheets, and model answers will be issued.

Aims

To develop the concepts of wave optics and establish a firm grounding in modern optics.

Learning outcomes

On successful completion students will be able to:

1. demonstrate an understanding of the application of waves in optics and be competent in the use of complex notation.

2. analyse simple examples of interference and diffraction phenomena.

3. be familiar with a range of equipment used in modern optics, particularly the Michelson interferometer and the Fabry-Perot etalon.

4. demonstrate an understanding of the physical processes involved in producing laser radiation.
Syllabus

1. Electromagnetism (2 lectures)
 Recap of Maxwell’s equations and the wave equation in a dielectric
 General solutions to the wave equation
 Particular solutions to the wave equation: plane & spherical waves
 Wavefronts, rays, Poynting vector; the time-averaged optical field
 Optical spectra – temporal and spatial frequencies
 Huygens’ wavelets and Fermat’s principle

2. Polarization (5 lectures)
 Recap of polarization states; unpolarized and partially polarized light
 Polarization by reflection and scattering; Brewster’s angle.
 Polaroid and Malus’ law
 Optical anisotropy; wave equation in anisotropic media; birefringence; o- and e-rays; double refraction
 Polarizing beamsplitters and waveplates; Faraday rotators

3. Interference (6 lectures)
 Conditions for interference; temporal and spatial coherence
 Young’s slits; Lloyd’s mirror; multiple slits
 The Michelson interferometer; Fourier Transform spectroscopy
 Thin films; Fabry-Perot etalon: resolution, FSR and finesse.

4. Diffraction (6 lectures)
 Fraunhofer diffraction: single and double slit, rectangular and circular apertures,
 resolution of optical instruments
 Fraunhofer diffraction as a Fourier transform; convolution
 The diffraction grating and spectrometers
 Fresnel diffraction: circular obstacles and half-period zones; straight edges

5. Lasers (4 lectures)
 Spontaneous and stimulated emission; absorption; Einstein coefficients
 Rate equations; population inversion and optical gain
 Optical cavities
 Steady state operation; threshold and efficiency
 An example laser system: Nd:YAG
PHYS20352 Thermal and Statistical Physics (Core) SEM2

Prerequisites: PHYS10352, PHYS20101

Follow up units: Many third and fourth year units, especially PHYS30151

Classes: 24 lectures in S4

Assessment: Tutorial work and attendance (5%)
1 hour 30 minutes examination in May/June (95%)

Recommended texts:

Feedback
Feedback is through weekly tutorials and marked tutorial work.

Aims
- To develop the ideas of classical thermodynamics
- To deepen the appreciation of the link between the microscopic properties of individual atoms or other particles and the macroscopic properties of many-body systems formed from them
- To demonstrate the power of statistical methods in physics

Learning outcomes
On completion successful students will be able to:

1. Demonstrate an understanding of the first and second laws of thermodynamics, and of the concept of entropy;

2. Explain and derive the fundamental thermodynamic relation;

3. Use the formalism of thermodynamics, including the thermodynamic potentials and Maxwell’s relations, and apply these tools to simple systems in thermal equilibrium;

4. Explain the basic concepts of statistical mechanics, including the derivation of the general formula for entropy in terms of the ensemble partition function;
5. Explain the statistical origin of the second law of thermodynamics; and

6. Construct a partition function for a system in thermal equilibrium and use it to obtain thermodynamic quantities of interest.

Syllabus

1. Classical thermodynamics: the first law (approx. 4 lectures)

2. Classical thermodynamics: the second law
 - From heat engines to entropy (approx. 4 lectures)
 - Thermodynamic potentials and Maxwell’s relations (approx. 4 lectures)

3. The statistical theory of thermodynamics
 - Microstates and macrostates; ensembles (approx. 1 lecture)
 - The statistical interpretation of entropy and temperature (approx. 1 lecture)
 - The spin-$\frac{1}{2}$ paramagnet (approx. 1 lecture)

4. Statistical physics of non-isolated systems
 - The derivation of the Boltzmann distribution (approx. 1 lecture)
 - The independent-particle approximation (approx. 1 lecture)
 - The partition function and its connection with thermodynamics (approx. 1 lecture)
 - Examples of partition function calculations (approx. 2 lectures)
 - The equipartition theorem (approx. 1 lecture)
 - The ideal classical gas (approx. 2 lectures)
PHYS20401 Lagrangian Dynamics (M) (C/O) SEM1

Prerequisites
PHYS10101, PHYS10302, PHYS10372

Follow-up units
PHYS30441, PHYS30201, PHYS40202, PHYS40771, PHYS40992

Classes
22 lectures in S3

Assessment
1 hour 30 minutes examination in January

Recommended texts
Goldstein, H., Poole, C. & Safko, J. *Classical Mechanics*, 3rd edition (Addison-Wesley)

Feedback
Model answers will be issued within one week of issuing each example sheet. Informal Q&A sessions will be organised to allow students to clarify any questions on the lecture material or on the model answers.

Aims
To introduce the Lagrangian and Hamiltonian formulations of classical mechanics. To develop the knowledge and skills required to solve a variety of dynamical problems involving more than one degree of freedom.

Learning outcomes
On completion successful students will be able to:

1. Choose an appropriate set of generalised coordinates to describe a dynamical system and obtain its Lagrangian in terms of those coordinates and the associated 'velocities'. Derive and solve the corresponding equations of motion. Treat small oscillations as an eigenvalue problem.

2. Apply a variational principle to solve simple problems involving constraints.

3. Appreciate symmetries and how they manifest themselves in terms of constants of the motion.

4. Obtain generalised momenta and thus the Hamiltonian of a dynamical system. Derive and solve the equations of motion in Hamiltonian form.
Syllabus

1. **Introduction**
 - Review of Newtonian mechanics: internal forces, external forces, forces of constraint. Rotational problems and polar coordinates.
 - Conservation laws and conservative systems.
 - Partial derivatives.

2. **Lagrangian Dynamics**
 - The energy method plus other conservation laws.
 - The Lagrangian and Lagrange’s equation.
 - Small oscillations and normal modes.

3. **Calculus of Variations**
 - Functional minimization.
 - The Euler-Lagrange equations.
 - Constrained variation.
 - Hamilton’s principle of least action.
 - Lagrangian dynamics.

4. **The Hamiltonian Formalism**
 - Legendre transformations.
 - Generalized momenta, the Hamiltonian and Hamilton’s equations.
 - Phase space. Liouville’s theorem.

5. **Symmetries and Conservation Laws**
 - Generators of transformations.
 - Poisson brackets.
 - Symmetries of the Lagrangian produce constants of motion. Noether’s theorem.

6. **Normal Modes from Matrices**
 - Normal modes from symmetries.
 - Review of mathematics of matrices: eigenvalues and eigenvectors.
 - Diagonalizing a matrix using its eigenvectors.
 - Small oscillations as eigenvalue problems.

7. **Special Topics**
 - Lagrangian for charged particle moving in electric and magnetic fields.
 - Continuous systems: the Lagrangian Density.
PHYS20491 Physics with Astrophysics Core Unit
Prof. B. Stappers & Dr. M. Keith

PHYS20491 Galaxies (C/O) SEM1

Prerequisites PHYS10191

Follow-up units PHYS20692, PHYS40992

Classes 22 lectures in S3

Assessment 1 hour 30 minutes examination in January

Recommended texts
Sparke, L.S. & Gallagher, J.S. Galaxies in the Universe (CUP)
Combes, F. et.al. Galaxies and Cosmology (Springer)

Feedback
Feedback will be provided through comments and solutions to weekly online examples.

Aims
To understand the observed properties of galaxies in the context of the current hierarchical structure formation theory.

Learning outcomes
On completion of the course, students will be able to:
1. classify galaxies using the Hubble scheme.

2. discuss critically methods of distance measurement to galaxies.

3. describe the properties of the Milky Way and compare its properties to external galaxies.

4. explain how to determine the mass of a galaxy and discuss the implication of this for the existence of dark matter.

5. describe the winding dilemma and give simple explanations for spiral arms.

6. demonstrate an understanding of the basic properties of galaxy clusters.
Syllabus

1. **Introduction – Our view of galaxies**
 Hubble and de Vaucouleurs classification schemes – the distance ladder and methods of measuring distances to Galaxies - luminosity function of galaxies – surface brightness magnitude – galaxy surveys.

2. **Our Galaxy – The Milky Way**
 principal components and their kinematics – stellar mass function - rotation curve – Oort constants - mass budget and evidence for dark matter – satellite streams – Galactic Centre.

3. **Disk galaxies**

4. **Elliptical galaxies**

5. **Groups, clusters and Galaxy formation**
 membership of galaxy groups and clusters – the Local Group – methods for estimating the mass of groups and clusters – morphology versus density relation for galaxies and for clusters of galaxies – classic and modern views of galaxy formation – open questions.
PHYS20612 Introduction to Photonics (Option) SEM2

Prerequisites
PHYS10302, PHYS20141

Follow-up units
PHYS30611

Classes
24 lectures in S4

Assessment
1 hour 30 minutes examination in May/June

Recommended texts
Milloni, P.W. & Eberly, J.H. Lasers
Smith, F.G. & King, T.A. Optics and Photonics: An introduction (Manchester Physics)
Wilson, J. & Hawkes, J.F.B. Optoelectronics: An introduction (Prentice Hall)

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims
This course introduces the concepts of photonics (the application and use of light in modern technologies) by discussing 4 broad themes, that of the properties of light, the production of light, the detection of light, and how information is encoded using light and different applications of these technologies. The course builds on the foundations laid in the 1st year and leads onto more advanced courses in lasers and photonics in later semesters. Short and long questions on various aspects of the course (with solutions) will be given during the course. All material will be available on Blackboard and on the school teachweb pages.

Learning outcomes
On completion of the course students should understand:
1. the nature of light and how to manipulate it for applications in photonics and related disciplines.

2. how light can be produced and how the properties of light can be determined.

3. how light can be used in communications systems.

4. application examples which have evolved from photonic techniques.
Syllabus (lectures not necessarily in this order)

1. **Nature of light and how it is manipulated** (7 lectures)
 - Wave descriptions (spectrum, superposition, interference effects), photon effects (photoelectric effect, momentum, interaction with matter).
 - Characteristics of light (polarization, coherence, monochromaticity), ways to define these mathematically (Stokes parameters, Jones vectors & matrices) and how to determine these characteristics.

2. **How light is produced – the LASER and LED** (8 lectures)
 - Einstein A and B coefficients, rate equations, gain and losses, optical feedback, laser threshold, 3 and 4 level lasers, cavity stability, cavity modes, Gaussian beams.
 - The LED and laser diode, p-n junction, heterojunction and stripe geometries.

3. **Detection of light radiation** (3 lectures)
 - Light detectors: photomultiplier tubes, photodiodes.
 - Generic system issues: sources of noise and signal-to-noise ratio, limitations on temporal response and effective bandwidth.

4. **Transmission and modulation techniques** (3 lectures)
 - Delivery methods. Basics of optical fibre techniques: step index fibre; acceptance angles, single and multimode fibres, dispersion limitations, transmission characteristics.
 - Acousto-optic and electro-optic techniques, LED switching, analogue and digital techniques using lasers, AM, FM, phase modulation techniques.

5. **Applications** (2 lectures)
 - A selection of the following applications will be discussed:
 - Digital communications
 - Display systems (LCD’s, plasmas etc)
 - Range-finding systems and applications (LIDAR etc)
 - More exotic applications (laser trapping, laser tweezeering, different forms of measurements)
 - Trends and new directions in photonic applications.
PHYS20672 Complex Variables and Vector Spaces (M) (C/O) SEM2

Prerequisites
PHYS10101, PHYS10302, PHYS10372

Follow-up units
PHYS30672 and theoretical options in 4th year

Classes
24 lectures in S4

Assessment
1 hour 30 minutes examination in May/June

Recommended texts

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims
To introduce students to complex variable theory and some of its many applications. To introduce the concept of vector space and some ideas in linear algebra.

Learning outcomes
On completion successful students will:
1. have an understanding of complex variable theory;
2. know how to evaluate integrals using the residue theorem, and understand how this can also be used to evaluate certain integrals along the real axis;
3. understand the basic concepts of vector spaces and the relation between vectors and operators and their representations in a given basis;
4. be able to carry out substantial calculations involving the topics in the syllabus and recognise
the techniques necessary.

Syllabus

1. **Complex numbers**
 (8 lectures)
 - Functions of complex variable
 - Functions as mappings
 - Differentiation, analytic functions and the Cauchy-Riemann equations
 - Conformal mappings
 - Solutions of 2D Laplace equation in Physics
 - Integration in the complex plane

2. **Contour integration**
 (8 lectures)
 - Cauchy’s Theorem
 - Cauchy’s integral formulae
 - Taylor and Laurent Series
 - Cauchy’s Residue Theorem
 - Real integrals and series

3. **Vector Spaces**
 (7 lectures)
 - Abstract vector spaces
 - Linear independence, basis and dimensions, representations
 - Inner products
 - Linear operators
 - Hermitian and unitary operators
 - Eigenvalues and eigenvectors
PHYS20692 Astrophysical Processes (C/O) SEM2

Prerequisites
PHYS10101, PHYS10191, PHYS10352, PHYS20141

Follow-up units
Useful for many 3rd and 4th year Astrophysics units

Classes
24 lectures in S4

Assessment
1 hour 30 minutes examination in May/June

Recommended texts
Dyson, J.E. & Williams, D.A. *The Physics of the Interstellar Medium* (2nd ed.) (IOP Publishing)
Rosswog, S. & Bruggen, M. *Introduction to High-Energy Astrophysics* (CUP)

Supplementary reading
Longair, M. S. *High Energy Astrophysics*, 3rd edition, (CUP)
Rybicki, G.B. & Lightman, A.P. *Radiative Processes in Astrophysics*

Feedback
Feedback will be available on students' individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims
To provide an introduction to a wide range of fundamental astrophysical processes and their role in modern astrophysics. These processes range from those which control the structure of the interstellar medium to those associated with supermassive black holes in the centre of galaxies. The observational signatures of these processes are identified, which cover the entire electromagnetic spectrum from radio to gamma-ray and include non-photonic tracers such as cosmic rays.
Learning outcomes

On completion successful students will be able to:

1. Understand fundamental physical processes, and their relevance to astrophysics, such as
 1. shock waves
 2. accretion
 3. radiative transfer
 4. the physical mechanisms controlling the ionisation and temperature of atoms, molecules and dust and the processes responsible for the formation of complex species in space

2. describe the sky as seen across the electromagnetic spectrum and the involved radiation mechanisms

3. being able to relate observations of a wide range of astrophysical sources to their physical conditions

Syllabus

a) Introduction: observations and astrophysical processes
b) Absorption and emission: radiative transfer and blackbody radiation
c) Grains and molecules in space
d) Shocks waves, supernovae and supernova remnants
e) Spectral lines: their formation and diagnostics
f) The composition and dynamics of the ISM, heating/cooling mechanisms and ionisation
g) Non-thermal emission processes
h) Compact objects and accretion on neutron stars and black holes
i) Supermassive black holes, and Active Galactic Nuclei
PHYS20762 Computational Physics (Option) SEM2

Prerequisites
PHYS20161

Follow-up units
PHYS30762

Classes
12 half days in the laboratory in S4, supported by 12 lectures in S4

Assessment
Continuously assessed (3 projects weighted 30%, 35%, 35%)

Late Submission
The standard penalties as detailed in Section 9.1 will apply

Note
Laboratory facilities are not available for resits. A student who has failed may be permitted to submit further assessments, based on laboratory work already carried out, in order to pass the course unit.

Recommended texts

Titus, A.B. *Introduction to Numerical Programming: A Practical Guide for Scientists and Engineers*

Feedback

Feedback will be given orally by demonstrators during lab sessions, and written and oral feedback of the written project work will be given.

Aims

To give an introduction to the techniques of computational physics and dynamic high-level scripting programming languages.

Learning outcomes

On completion successful students will be able to:

1. Write programs using dynamic high-level scripting programming languages and carry out data analysis in them.

2. Use classical numerical methods (Euler and higher order) to find solutions of ordinary differential equations and to analyse the behaviour of a physical system (such as a driven oscillator).
3. Use Monte Carlo techniques and associated statistical methods.

Syllabus

Project 1

1. **Use of a high-level scripting language for data analysis**
 (i) Definitions of variables and arrays; scalar and array operations; built in and user-defined functions;
 (ii) Working with data sets: file input/output. Data visualisation and plotting;
 (iii) Revision of error analysis: χ^2 analysis, errors on fitting coefficients, propagation of errors;
 (iv) Comparison of different high-level languages.

Project 2

2. **Numerical methods and the solution of ordinary differential equations**
 (i) Introduction to numerical computing; errors in numerical methods;
 (ii) Numerical methods for solving ordinary differential equations; Euler’s method; higher-order methods; symplectic methods;
 (iii) Implementation of numerical methods;
 (iv) The linear driven damped oscillator; phase space; conserved quantities; sources of simulation error;
 (v) Introduction to nonlinear systems.

Project 3

3. **The Monte Carlo method and its applications.**
 (i) Introduction to Monte Carlo methods; Monte Carlo integration; classical problems;
 (ii) Pseudorandom sampling; methods of generating samples with given probability density;
 (iii) Applications of Monte Carlo methods;
 (iv) Statistical errors.
PHYS20811/ PHYS20821 Professional Development (Core) SEM1

Professional Skills for Physicists

Components: 1st Year vacation essay including presentation
Online Advanced Writing Skills module
CV and Job Application Master Class
Managing My Future sessions
Online Professional Ethics for Physicists module

Assessment: For the full course unit (PHYS20811)
Assessed Vacation Essay and presentation 50%
Managing My Future 20%
Online Professional Ethics for Physicists module 15%
Online Equality and Diversity Awareness module 15%

Direct-entry students into second year who have not written a vacation essay will be assessed solely on Managing My Future (40%) and the online modules (30% each).

Aims
- To develop the skills of written and oral communication, group work, and the skills required for career development.
- To foster an understanding of ethical issues in science.
- To increase awareness of equality and diversity issues.

Feedback Oral and written feedback will be given on the activities during Managing My Future. Feedback will be offered in writing on the vacation essay and presentation.

Learning outcomes
On completion successful students will be able to:
1. Better communicate, both orally and in writing, with a scientific audience.
2. Better communicate, both orally and in writing, with a non-scientific audience.
3. Appreciate the issues involved in working within a group.
4. More successfully apply for graduate jobs and careers.
5. Better understand ethical issues associated with their work.

Syllabus

Written Communication
a) By week 1 of semester 3 all students will be required to complete a short module on Scientific Writing in Blackboard. The topics include Sentence Structure and Punctuation, Word Choice and Grammar, Academic Style, Conventions and Characteristics, Improving Readability, Writing Paragraphs, Critical Reading, Summarising, Paraphrasing and Referencing, Phraseological and Rhetorical Awareness, Review and Revision, and The Process of Writing.

b) Vacation Essay
Submission of an essay of between 1500 and 1800 words on a physics-related subject selected from a list or otherwise approved by the 1st Year Tutor. The deadline for submission is during Week 1 of Semester 3. The exact deadline is announced at the end of Semester 2. The essay should convey knowledge and understanding of a physics-related topic in a measured but informal way at a level to educate and interest a fellow physics student.

Failure to complete the online module will result in a recorded mark of zero for the Vacation Essay.

1. Managing My Futures
A session looking at employability skills is schedule on Tuesday 26th September 2017.

2. Ethics
Students will be required to complete an online module “Professional Ethics for Physicists” covering plagiarism (briefly) and academic good practice, honesty and data integrity, ethical issues for physicists (for example the potential sociological or environmental impact of new technologies weapons, nuclear power, nuclear weapons) and whistle-blowing.

3. Equality and Diversity Awareness
Students will be required to complete online modules addressing equality and diversity issues.
PHYS20872 Theory Computing Project (Core) SEM2

Follow-up units
3rd year lab. and 4th year projects

Classes
3 weeks in the computer lab. 2 afternoons per week in S4 followed by 7 weeks of independent project work.

Assessment
A written report (50% of the mark), presentation (25%) and short interview (25%)

Late submission
The standard penalties as detailed in Section 9.1 will apply.

Note
Laboratory facilities are not available for resits. A student who has failed may be permitted to submit further assessments, based on laboratory work already carried out, in order to pass the course unit.

Organisation
The first three weeks of the course will be delivered in a computer cluster with set work to be handed in before progressing onto the project. Projects are taken in pairs and supervised by an academic; there is a total of 7 weeks to finish the projects, after which a report will have to be submitted. The work will be assessed on the report, and by a short talk and an interview.

Recommended texts
As set in the project booklet, or suggested by the supervisor.

Feedback
Feedback will be offered orally by the supervisors during regular project meetings, and orally and in writing for all reports and interviews.

Aims
To develop the ability to investigate problems in theoretical physics through literature study, mathematical analysis and computation.
Learning outcomes

On completion the successful student will be able to:

1. quickly gain access to relevant literature for a given problem.
2. start the theoretical analysis of a problem they have not met before.
3. use the appropriate computational tools to tackle problems in theoretical physics.
4. present their work succinctly and clearly to their peers.
5. give a detailed explanation of their work in a report.
6. defend their work to an expert.

Further details

Past projects include:
The Ising ferromagnet;
Neutron stars;
The Schrödinger equation for a particle in a well;
The anharmonic oscillator;
Chaos in classical mechanics;
Scars in wave functions;
Simulation of road traffic;

The students will be provided with a detailed project booklet at the start of the project.
PHYS30101 Applications of Quantum Physics (Core) SEM1

Prerequisites
PHYS20101

Classes
22 lectures in S3

Assessment
1 hour 30 minutes examination in January

Recommended text
Rae, A. I. M. Quantum Mechanics (Chapman and Hall)

Supplementary reading
Gasiorowicz, S. Quantum Physics (Wiley)
Mandl, F. Quantum Mechanics (Wiley)
Miller, D.A.B. Quantum Mechanics for Scientists and Engineers (Cambridge)

Feedback
Feedback will be offered by tutors in examples classes. These classes will be based on weekly examples sheets; solutions will be issued.

Aims
To develop basic concepts of quantum mechanics and apply them to a variety of physical systems.

Learning outcomes
On completion successful students will be able to:

1. Calculate the probability of tunnelling through a barrier.
2. Solve simple eigenvalue problems for trapped particles.
3. Solve eigenvalue problems for two-state systems.
4. Add angular momenta in quantum mechanics and calculate the fine-structure of atomic energy levels.
5. Calculate first-order shifts in energy levels produced by external fields.
6. Define entangled states in quantum mechanics and use these to describe simple ideas of quantum information.
Syllabus

1. **Barriers and tunnelling**
 - Applications to nuclear physics
 - Applications to layered semiconductors

2. **Trapped particles**
 - Quantum dots and artificial atoms
 - Quantum wires and quantum wells
 - First-order perturbation theory

3. **Spin and other two-state systems**
 - Angular momentum without angles
 - Spin and Pauli matrices
 - Adding angular momenta
 - Other two-state systems

4. **Atoms in magnetic fields**
 - Spin-orbit coupling and fine structure
 - Zeeman effect and Landé g-factor
 - Spectra and selection rules
 - Quantum dots in magnetic fields
 - Precession and NMR

5. **Quantum information**
 - Measurement in quantum mechanics
 - Entanglement
 - Quantum cryptography
PHYS30121 Introduction to Nuclear and Particle Physics (Core) SEM1

Prerequisites
PHYS10121, PHYS20101

Follow-up units
PHYS40222, PHYS40322, PHYS40422, various fourth year courses

Classes
22 lectures in S5

Assessment
1 hour 30 minutes examination in January

Feedback
Feedback will be offered by tutors in example classes. These classes will be based on weekly example sheets; solutions will be issued.

Recommended texts
B. R. Martin, Nuclear and Particle Physics: An Introduction, 2nd ed. (Wiley)

Supplementary reading
Wong, S. S. M. Introductory Nuclear Physics (Wiley)
Krane, K. S. Introductory Nuclear Physics (Wiley)
Martin B. R. and Shaw, G. Particle Physics (Wiley)
Perkins, D. H. Introduction to High Energy Physics (CUP)

Aims
To introduce the fundamental constituents of matter and the forces between them, and to explore how these lead to the main features of the structure and interactions of subatomic systems (particles and nuclei).

Learning outcomes
On completion successful students will be able to:
1. outline the basic constituents of matter and the fundamental forces between them.
2. represent elementary processes by simple Feynman diagrams.
3. use symmetries and conservation laws to identify the forces responsible for particular reactions and decays.
4. use the quark model to explain the patterns of light hadrons.
5. use simple models to explain the patterns of nuclear masses, sizes and decays.
6. apply the independent-particle model to simple ground-state properties of nuclei.
Syllabus

1. **Basic concepts**
 - Quarks, hadrons and leptons
 - Strong, electromagnetic and weak forces
 - Symmetries and conservation laws
 - Parity and charge conjugation
 - Feynman diagrams and exchange forces
 - Decay rates and scattering cross sections
 - Quark model for light hadrons
 - Parity violation in the weak interaction

2. **Nuclei**
 - Nuclear forces
 - Nuclear sizes
 - Semi-empirical mass formula
 - Nuclear stability
 - Alpha decay
 - Shell model

3. **Particles**
 - Three generations
 - Flavours and flavour mixing
 - Quark model with three flavours
 - Heavy-quark hadrons
 - CP violation
 - The origin (s) of mass
PHYS30141 Electromagnetic Radiation (Option) SEM1

Prerequisites
PHYS20141, PHYS20312

Follow-up units
None

Classes
22 lectures in S5

Assessment
1 hour 30 minutes examination in January

Recommended texts
Bekefi, G. & Barrett, A.H. Electromagnetic vibration, waves and radiation, (MIT)
Smith, G.S. An Introduction to Classical Electromagnetic Radiation, (CUP 1997)

Feedback
Feedback will be offered by examples class tutors based on examples sheets, and model answers will be issued.

Aims
To develop an understanding of the production, scattering and transmission of electromagnetic waves.

Learning outcomes
On completion successful students will be able to:
1. use Maxwell's equations to describe the propagation of electromagnetic waves in vacuum.
2. demonstrate an understanding of how accelerated charges produce electromagnetic radiation.
3. show how waves are propagated in dielectrics and conductors.
4. demonstrate an understanding of the reflection and refraction of waves at boundaries; and the scattering of waves by free and bound electrons.
5. explain the properties of electromagnetic fields when guided by transmission lines and waveguides.
6. describe sources of electromagnetic radiation in physics.
Syllabus

1. **The Electromagnetic Field** (4 lectures)
 - Maxwell’s equations for \(\mathbf{E} \), \(\mathbf{B} \), Charge conservation
 - Potentials in electromagnetism
 - Energy in the electromagnetic field
 - Poynting’s Theorem
 - Electromagnetic plane waves
 - Polarisation. Radiation Pressure

2. **Sources of Radiation** (3 lectures)
 - Potentials in electromagnetism (dynamic fields)
 - Retarded potentials
 - Radiation from accelerated charge - Larmor formula

3. **Radiation in matter** (5 lectures)
 - Maxwell’s equations in media
 - Plane waves in matter. Refractive index
 - Radiation in dielectrics – dispersion
 - Radiation in conductors and plasmas

4. **Reflection, Refraction & Scattering** (4 lectures)
 - Boundary conditions
 - Normal and Oblique Incidence Reflection from dielectric
 - Fresnel’s equations. Total internal reflection
 - Reflection from metallic surface
 - Scattering from free electrons - Thomson scattering
 - Scattering by atoms - Rayleigh scattering

5. **Guided Radiation** (4 lectures)
 - Transmission lines. Characteristic impedance \(Z_0 \). Matching
 - Attenuation in guides.
6. **Other Sources of Radiation** (2 lectures)
 - Bremmstrahlung
 - Cyclotron and Synchrotron Radiation
 - Cerenkov Radiation
PHYS30151 Thermal Physics of Bose and Fermi Gases (Core) SEM1

Prerequisites
PHYS20352

Follow-up units
PHYS40352, PHYS40451, PHYS40752

Classes
22 lectures in S5

Assessment
1 hour 30 minutes examination in January

Recommended texts
Most of the course material at the appropriate level can be found in:
- Kittel, D. & Kroemer, H. *Thermal Physics*, (Freeman)
- Mandl, F. *Statistical Physics*, (Wiley)

Feedback
Feedback will be offered by examples class tutors based on examples sheets, and model answers will be issued.

Aims
To use the methods of quantum mechanics and statistical physics to calculate the behaviour of gases of identical particles and to apply the results to some important physical systems.

Learning outcomes
On completion successful students will be able to:
1. demonstrate an understanding of the implications of particle indistinguishability for the properties of systems of non-interacting particles.
2. write down the Bose-Einstein and Fermi-Dirac distribution functions and apply them to calculate the properties of ideal Bose and Fermi gases.
3. compare and contrast the properties of the ideal Bose gas with those of real Bose systems, in particular black body radiation, phonons in solids.
4. compare and contrast the properties of the ideal Fermi gas with those of real Fermi systems, in particular electrons in metals.
Syllabus

1. **Introduction to ideal quantum gas**
 - Single particle states, k-space, density of states.
 - The classical limit; partition functions, pressure, entropy, chemical potential.

2. **Indistinguishability**
 - Bosons, fermions
 - Gibbs distribution; meaning of chemical potential; derivation of Fermi-Dirac and Bose-Einstein distribution functions.

3. **The ideal Fermi gas**
 - Fermi sphere, Fermi wave number, Fermi energy, Fermi temperature, Fermi velocity.
 - Free electron theory of metals; pressure.
 - Graphene properties. Calculation of electron and hole concentrations in graphene.

4. **The ideal Bose gas**
 - Bose-Einstein condensation; liquid 4He.

5. **Black body radiation**
 - Planck's radiation law; photons.
 - Internal energy, pressure and entropy of photon gas; Wien's law; Stefan's law.

6. **Lattice vibrations of solids**
 - Einstein theory of heat capacity; phonons.
 - Debye theory of heat capacity.
PHYS30180/ PHYS30280 Third Year Laboratory (Core) ALL YEAR

Feedback
Feedback will be offered orally by demonstrators in lab sessions, orally and in writing by demonstrators when they mark each experiment during the interview, and in writing for all lab reports.

Aims and Learning Outcomes:
These are presented in Section 2.4 of this booklet.

Prerequisites
PHYS20101, PHYS20141, PHYS20161, PHYS20171,
PHYS20252, PHYS20312, PHYS20352

Follow-up courses
4th year projects or postgraduate research.

Classes
Laboratory work is divided into four blocks, A and B in S5 and C and D in S6. Each block spans six weeks and is worth 10 credits. Lab blocks comprise 8 full days in the lab on Tuesdays and Thursdays, 9.00am to 5.00pm, over four weeks, followed by an assessment in the fifth week and a written report completed during weeks five and six.

MPhys and BSc students usually perform one experiment in each semester (Block A or B + Block C or D).

BSc students additionally undertake a dissertation (PHYS30880) during one block.

Students may express a preference as to which blocks they take. However, the final choice of blocks for each student will be made by the Laboratory Tutor for logistic reasons.
Experiments last 12 full days: 8 days of experimental work plus 4 days for preparing presentations, and for assessment. Experiments will be assigned beforehand by the Laboratory Tutor on the basis of student requests.

Students will usually work in pairs on their experiment and will be given a great deal of freedom in the way they perform the experiments, but demonstrators will discuss the experiments with them at the beginning and will be available to assist and advise at all stages.

Assessment
Assessment comprises of two components. The first is through a presentation and interview on completion of each experiment. The presentation is made jointly by the student pair. This component will take into account the following: experimental skill and record keeping, the oral presentation, understanding of the relevant physics, quality of the results and the analysis, originality and initiative. The second component of assessment is through written reports of each experiment. Independent written reports are completed individually by each student and are assessed individually. Each written account must be in word-processed form with strict length limits. The credit split for the interview/report is 70/30. Dates for interviews and deadlines for written reports will be published well in advance and late penalties will apply.

Late submissions of lab reports
The standard penalties as detailed in Section 8.1 of the Blue Book will apply.

Over-length lab reports
A 2000 word limit (excluding references) for the long report or a total 2 page limit for the short report is in force. Penalties will be applied for over-length reports on a sliding scale for long-type (short-type) reports:

- 2000 – 2250 words (or 2 – 2.2 pages) – 5 marks deducted
- 2250 – 2750 words (or 2.2 – 2.4 pages) – 15 marks deducted
- 2750 – 3750 words (or 2.4 – 3 pages) – 30 marks deducted
- Over 3750 words or over 3 pages – a mark of zero to be awarded

Late interviews
20 marks will be deducted if an interview is not booked by the end of the fourth week. If an interview is not booked by the end of the fifth week, or if students fail to show up for an arranged interview they will be awarded zero. If a student arrives more than 15 minutes late for an interview, the demonstrator may choose to cancel the interview and apply penalties as above.
Please note that you are required to pass the lab (>40%) in order either to progress to year 4 of an MPhys course, or to graduate with an honours BSc. Students who fail lab may be awarded an ordinary BSc degree.

Induction to the Laboratory Course

All 3rd year students will attend at the beginning of the year, a presentation by the Laboratory Tutor and will receive from their Personal Tutors a handout describing in detail the organisation, philosophy, and methods of assessment.
PHYS30201 Mathematical Fundamentals of Quantum Mechanics (M) (C/O) SEM1

Prerequisites
PHYS20101, PHYS20672 or MATH10212
PHYS20252 is recommended but not essential.

Follow-up units
PHYS40202 and fourth year courses

Classes
22 lectures in S5

Assessment
1 hour 30 minutes examination in January

Recommended texts
Mandl, F. Quantum Mechanics (Wiley, 1992)
Griffiths, D. J. Introduction to Quantum Mechanics, 2nd ed (CUP, 2017)

Feedback
Feedback will be available on students’ solutions to examples sheets through examples classes, and model answers will be issued.

Aims
To develop an understanding of quantum mechanics and in particular the mathematical structures underpinning it.

Learning outcomes
On completion of the course, successful students should be able to:

1. Use Dirac notation to represent quantum-mechanical states and manipulate operators in terms of their matrix elements
2. Understand the mathematical underpinnings of quantum mechanics and solve a variety of problems with model and more realistic Hamiltonians
3. Demonstrate familiarity with angular momentum in quantum mechanics at both a qualitative and quantitative level
4. Use perturbation theory and other methods to find approximate solutions to problems in quantum mechanics, including the fine-structure of energy levels of hydrogen
Syllabus

1. **Quantum mechanics and vector spaces** (9 lectures)
 - Review of vector spaces
 - Postulates of quantum mechanics
 - x and p operators and momentum-space wave functions
 - Time evolution: the Schrödinger equation
 - Stern-Gerlach experiments
 - Example: Spin precession
 - Ehrenfest’s theorem and the classical limit
 - The simple harmonic oscillator: creation and annihilation operators
 - WKB approximation
 - Variational methods
 - Composite systems and entanglement

2. **Angular Momentum** (7 lectures)
 - Angular momentum commutators
 - Eigenvalues and eigenstates of angular momentum
 - Orbital angular momentum vs spin
 - Pauli spin matrices
 - Example: Magnetic resonance
 - Addition of angular momentum
 - Clebsch-Gordan coefficients
 - The Wigner-Eckhart theorem

3. **Time independent perturbation theory** (5 lectures)
 - Examples of perturbation theory
 - The fine structure of hydrogen
 - The Zeeman Effect: hydrogen in an external magnetic field
 - The Stark effect: hydrogen in an external electric field

3. **Quantum measurement** (1 lecture)
 - The Einstein-Podolsky-Rosen “paradox” and Bell’s inequalities
PHYS30392 Cosmology (C/O) SEM2

Prerequisites
PHYS10191, PHYS10121, PHYS10071, PHYS10101, PHYS10302, PHYS10352, PHYS10372, PHYS30151

Follow up units
PHYS40692, PHYS40771, PHYS40772

Classes
24 lectures in S6

Assessment
1 hour 30 minutes examination in May/June

Recommended text
Liddle, A., An Introduction to Modern Cosmology 2nd ed. (Wiley)
Ryden, B., Introduction to Cosmology (Addison Wesley)

Useful references
Harrison, E., Cosmology: the Science of the Universe, 2nd ed. (CUP)
Hawley, J.F and Holcomb, K.A., Foundations of Modern Cosmology (Oxford)
Peacock, J.A., Cosmological Physics, (CUP)
Pisano, G., Cosmology Course Lecture Slides (www.jb.man.ac.uk/~gp/)
Serjeant, S., Observational Cosmology (CUP)

Supplementary reading
Weinberg, S., The First Three Minutes, Updated ed. (Basic Books)

Feedback
Feedback will be offered by examples class tutors based on examples sheets, and model answers will be issued.

Aims
1. To provide a broad overview of modern physical cosmology.
2. To make clear the connections between basic physical ideas and modern cosmology.

Learning outcomes
On completion of the course, students should be able to:
1. Explain the concepts of the expansion and curvature of space.
2. Summarize the main evidence in favour of the Big Bang, inflation, dark matter and dark energy.
3. Relate the density of the universe to its rate of expansion and understand how this relation is modified by a cosmological constant.
4. Solve for the scale factor $a(t)$ in different epochs of the Universe's history.
5. Make quantitative calculations of physical processes in the early universe.
6. Relate observed to physical properties of distant objects given the luminosity and angular size distances.
7. Describe the main events of the universe's history and locate them approximately in time and redshift.

Syllabus

1. **Basic observations of the Universe** (6 lectures)
 1.1 What is cosmology?
 1.2 Olber’s paradox
 1.3 Expansion and acceleration of the Universe
 1.4 Cosmic Microwave Background
 1.5 Large-scale structure
 1.6 Dark matter in galaxies and clusters of galaxies

2. **FRW Universe Model** (8 lectures)
 2.1 Review of Newtonian gravity
 2.2 Geometry of the spacetime
 2.3 Dynamical equations
 2.4 Solutions for the scale factor
 2.5 Distances measures in the FRW Universe
 2.6 Cosmological puzzles and inflation

3. **Thermal History of the Universe** (6 lectures)
 3.1 Review of statistical mechanics and natural units
 3.2 Cosmological freeze-out
 3.3 Recombination
 3.4 Neutrino decoupling – relativistic freeze-out
 3.5 WIMP decoupling – non-relativistic freeze-out
 3.6 Nucleosynthesis
 3.7 Baryogenesis
3.8 Brief history of time!

4. **Precision Cosmology**

4.1 Standard model of cosmology

4.2 Measurement of parameters using the CMB & P(k)

4.3 Beyond the standard model: curvature, dark energy & massive neutrinos
PHYS30441 Electrodynamics (M) (C/O) SEM1

Prerequisites
PHYS20141, PHYS20401 (useful but not essential)

Follow-up units
PHYS40481, PHYS40682, PHYS40771, PHYS40772

Classes
23 lectures in S6

Assessment
1 hour 30 minutes examination in January

Recommended texts
Griffiths, D.J., Introduction to Electrodynamics (Benjamin Cummings; 3rd edition (December 30, 1998))

Supplementary reading
Feynman, The Feynman Lectures on Physics, Vol II (Addison Wesley, 1964)

Feedback
Feedback will be offered by examples class tutors based on examples sheets, and model answers will be issued.

Aims
To cover theoretical aspects of electromagnetic fields and radiation.

Learning outcomes
On completion successful students will be able to:
1. demonstrate an understanding of the use of scalar and vector potentials and of gauge invariance.
2. demonstrate the compatibility of electrodynamics and special relativity.
3. know and use methods of solution of Poisson’s equation and the inhomogeneous wave equation.
4. know and use principles of Lorentz covariant formalism and tensor analysis.
5. distinguish between radiation fields and other electromagnetic fields.
6. calculate the radiated power produced by accelerating charges.

Syllabus

1. **Linear Algebra**
 (1 lecture)
 Revision of vectors and matrices; basis sets and components. Index notation and summation convention. Rotational invariance and cartesian tensors.

2. **Electromagnetic Field Equations**
 (7 lectures)
 Maxwell's equations and wave solutions. Definition of scalar and vector potential. Poisson's equation and electro- and magnetostatics; multipole expansions. Electrodynamics in Lorentz Gauge; the inhomogeneous wave equation and the retarded time.

3. **Accelerating Charges**
 (6 lectures)
 Lienard-Wiechert potentials; Power radiated from an arbitrarily moving charge. Larmor’s power formula; synchrotron radiation; bremsstrahlung.

4. **Harmonically Varying Sources**
 (2 lectures)
 Multipole radiation: electric (Hertzian) and magnetic dipole radiation; slow-down of pulsars. Rayleigh and Thomson scattering.

5. **Electromagnetism and Relativity**
 (8 lectures)
 Four vectors and tensors; Covariant and contravariant formalism of Lorentz transformations; relativistic dynamics. Consistency of Maxwell's equations and relativity. Electromagnetic field tensor and electrodynamics in covariant form.
PHYS30471 Introduction to Nonlinear Physics (M) (Option) SEM1

Prerequisites
PHYS10101, PHYS10302, PHYS10372, PHYS20171.

Classes
22 lectures in S5.

Assessment
1 hour 30 minutes examination in January.

Recommended texts

Useful references

Supplementary reading

Feedback
While students will not be required to hand in solutions to example sheets, I will give feedback on written solutions, should students wish to hand in work. Model answers will be issued. One or two Question & Answer sessions may be arranged.

Aims
To introduce the concepts required for understanding 'real world' nonlinear phenomena using a variety of mathematical and laboratory models.

Learning outcomes
On completion successful students will be able to:
1. explore the basic concepts of nonlinear dynamics using the 'simple' pendulum and adaptations of it.
2. analyse simple one and two-dimensional nonlinear systems.
3. identify attractors of those nonlinear systems, and to characterise their stability.
4. understand and apply the basic numerical methods relevant for nonlinear systems.
5. demonstrate an understanding of what constitutes chaotic behaviour and explain why this imposes limits on predictability.

6. survey applications of the ideas in several areas of physics, and in other disciplines

7. describe the concept of a fractal and explain the idea of a non-integer dimension.

Syllabus

1. **Introduction** - overview of the course introducing some of the basic ideas. (1 lecture)
 General introduction and motivation; examples of linearity and nonlinearity in physics and the other sciences; modelling systems using iterated maps or differential equations.

2. **General features of dynamical systems** - the structures that may arise in the analysis of ordinary differential equations. (10 lectures)
 Systems of differential equations with examples; control parameters; fixed points and their stability; phase space; linear stability analysis; numerical methods for nonlinear systems; properties of limit cycles; nonlinear oscillators and their applications; the impossibility of chaos in the phase plane; bifurcations: their classification and physical examples; spatial systems, pattern formation and the Turing mechanism; strange attractors and chaotic behaviour.

3. **The logistic map** - period doubling and chaos in a simple iterated map. (4 lectures)
 Linear and quadratic maps; graphical analysis of the logistic map; linear stability analysis and the existence of 2-cycles; numerical analysis of the logistic map; universality and the Feigenbaum numbers; chaotic behaviour and the determination of the Lyapunov exponent; other examples of iterated maps.

4. **Fractals** - complex geometrical objects of which strange attractors are examples. (4 lectures)
 How long is the coastline of Britain? Artificial fractals: the Cantor set and von Koch curve; fractal dimensions; iterations of the complex plane and the Mandelbrot set; how fractals arise in the description of dynamical systems.

5. **Further aspects of chaotic dynamics** - exploring the basic ingredients of chaos. (3 lectures)
 Fractal structures in simple maps; how strange attractors come about; the evolution of phase space volumes in chaotic and non-chaotic systems; mixing and information entropy.
PHYS30511 Nuclear Fusion and Astrophysical Plasmas (Option) SEM1

Prerequisites
PHYS20141, PHYS20171, PHYS20352

Classes
22 lectures in S5

Assessment
1 hour 30 minutes examination in January

Recommended texts
Chen, F.F. Plasma Physics and Controlled Fusion (Plenum Publishers)
Gurnett, D.A. and Bhattacharjee A. Introduction to Plasma Physics with Space and Fusion
applications (Cambridge U.P.)
Inan, U.S. and Golkowski. M. Principles of Plasma Physics for Engineers and Scientists (Cambridge
U.P.)

Supplementary reading
Baumjohann, W. & Treumann, R.A. Basic Space Plasma Physics (Imperial College Press)
Friedberg, J. Plasma Physics and Fusion Energy (Cambridge U.P.)
Goedbloed, H. & Poedts, S. Principles of Magnetohydrodynamics with Applications to Laboratory and
Space Plasmas (Cambridge U.P.)
McCacken,G. and Stott,P. Fusion: the energy of the universe (Elsevier)
Stacey, W.M. Fusion (Wiley)

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, and model
answers will be issued.

Aims
To introduce the concept of plasma as the fourth state of matter, and to show why the study of
plasma is important in contemporary physics; to give a grounding in the theory explaining the basic
properties of the plasma state; to develop an understanding of the principles of fusion research as
well as some plasma phenomena observed in space and astrophysics.
Learning outcomes

On completion of the course, students should be able to demonstrate an understanding of:

1. the basic concepts, parameters and modelling approaches of plasma physics.

2. single particle motion in plasmas.

3. the macroscopic (fluid) plasma model, including simple magnetohydrodynamic descriptions of equilibrium, Alfvén waves and magnetic reconnection.

4. the reactions and power balance relevant to controlled nuclear fusion and the principles of various approaches to controlled fusion.

5. the physics behind such phenomena as the Earth’s radiation belts, solar and stellar coronae, solar and stellar flares, the solar wind and its interaction with planetary magnetospheres.

Syllabus

1. Introduction to fusion and astrophysical plasmas
 What is a plasma? Overview of natural and man-made plasmas. Fusion reactions and energetics; the Lawson criterion. Magnetic confinement fusion devices; the tokamak. Inertial confinement and lasers. Magnetic fields and activity in the heliosphere.

2. Basic concepts and parameters of plasma physics

3. Single particle motion in non-uniform magnetic and electric fields
 Drift approximation and guiding-centre theory. Magnetic moment and mirroring. The Earth’s magnetic field and radiation belts. Particle orbits and confinement in tokamaks.

4. The magnetohydrodynamic description
 Fluid model of plasmas, equations of MHD. Magnetic Reynolds number, ideal MHD. Magnetostatic equilibrium and force-free magnetic fields; solar prominences and loops, pinches, tokamaks. Alfvén waves. Instabilities. The solar wind. Magnetic reconnection; solar and stellar flares, planetary magnetospheres, reconnection in fusion plasmas. The structure of the Earth’s magnetosphere.
PHYS30611 Lasers and Photonics (Core) SEM1

Prerequisites

PHYS20612

Follow-up units

PHYS40631, PHYS46111

Classes

24 lectures in S5

Assessment

1 hour 30 minutes examination in January

Recommended texts

Milloni, P.W. & Eberly, J.H. Lasers
Saleh, B.E.A., Teich, M.C. Fundamentals of Photonics (Wiley)
Siegman, A.E. Lasers (University Science Books)
Smith, F.G. & King, T.A. Optics and Photonics: An introduction (Manchester Physics)
Wilson, J. & Hawkes, J.F.B. Optoelectronics: An introduction (Prentice Hall)
Yariv, A. Introduction to Optical Electronics (Wiley)

Feedback

Feedback & exercises will be available through examples presented during the lectures together with answers available via Blackboard, and through working through the solution of selected examples in the lectures.

Aims

This course follows on from PHYS20612, thereby providing a solid background for the physics and operation of different types of lasers and photonic principles, together with examples of their use in scientific research.

Learning outcomes

On completion of the course, students will be able to:

1. Demonstrate how a laser operates, and how optical feedback is used to ensure lasing.

2. Understand line broadening and how this is of relevance to laser operation.

3. Demonstrate an understanding of the concepts of laser thresholds, gain and the oscillation conditions using rate equations.
4. Review multi-mode laser operation, including higher order cavity modes.

5. Describe the operation and output characteristics of a selection of laser sources.

6. Review applications of lasers and photonics in scientific research.

Syllabus

1. Basic laser physics: Einstein A and B coefficients; induced and spontaneous transitions; systems in thermal equilibrium; population inversion.

2. Homogeneous and inhomogeneous broadening: Doppler; natural; pressure; Gaussian and Lorentzian lineshapes and widths, the Voigt Profile.

3. Understanding the processes that lead to lasing from a single atom – laser field interaction using density matrices, through to the solutions for many atoms in a gain medium.

5. Laser oscillation: oscillation conditions; threshold conditions; passive cavity frequencies.

6. 3 and 4 level lasers: power to maintain threshold, output coupling & optimization.

8. Laser cavities and modes: Gaussian modes; high order transverse modes; frequencies of oscillation; Laguerre-Gaussian modes, mode stability.

10. Applications and examples of lasers & photonics used in research.
PHYS30632 Physics of Medical Imaging (Option) SEM2

This course is designed to demonstrate how imaging methods utilize physical principles to address problems in clinical diagnosis, patient management and biomedical research.

Prerequisites
The equivalent of the following core physics courses:
PHYS10071, PHYS10121, PHYS10302, PHYS10342,
PHYS20141, PHYS20171, PHYS20312

Follow-up units
Postgraduate research

Classes
23 lectures in semester 6

Assessment
1 hour 30 min examining in May/June

Recommended texts
Because of the breadth of the material, students will be provided with a reading list and/or detailed notes as appropriate.

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims
To illustrate, using medical imaging, how physics is applied to the problems of clinical measurement, diagnosis, patient management and biomedical research.
To provide an understanding of the phenomena and processes of medical imaging.

Learning outcomes
On completion, students will be able to:
1. identify the major medical imaging methods and methods used in biomedical research
2. describe the physical processes underlying major medical imaging modalities including:
 • Positron emission tomography (PET) and single photon emission computed tomography (SPECT)
• Ultrasound imaging
• X-ray imaging and X-ray computed tomography (CT)
• Magnetic resonance imaging (MRI)
• understand the essential mathematical concepts of image formation and reconstruction
• describe methods for generating 2D and 3D medical images
• explain the properties of medical images

3. describe a variety of applications of medical imaging techniques

Syllabus

1. **Introduction to medical imaging**
 (1 lecture)
 The role of physics in medical imaging and the range of imaging methods.

2. **Ultrasound imaging**
 (2 lectures)
 Transducers, properties of the ultrasound beam, interaction of the beam with the patient,
 acoustic impedance, scanning modes, Doppler ultrasound and flow imaging.

3. **X-ray imaging and X-ray CT**
 (4 lectures)
 X-ray tubes and the generation of X-rays, X-ray spectrum, interaction of X-rays with the patient,
 attenuation, image receptors, X-ray image properties, measurement noise, contrast, resolution,
 X-ray computed tomography (CT), 2-D and 3-D imaging, filtered back projection, Hounsfield
 Units.

4. **Image mathematics and introductory image processing**
 (2 lectures)
 Digital image representation, Fourier reconstruction methods, iterative reconstruction,
 modulation transfer functions, 2-D convolution, image filtering and noise reduction, image
 segmentation, image registration.

5. **Positron emission tomography (PET) and single photon emission computed tomography (SPECT)**
 (3 lectures)
 Radiosotopes, radiotracers and molecular imaging, scintillators, gamma cameras, resolution,
 sensitivity, collimators, coincidence, PET-CT and SPECT-CT, tracer kinetic modeling.
6. **Magnetic resonance imaging (MRI)** (7 lectures)
 Basic concepts of MR physics, spin polarization, resonance, relaxation, spin echoes, gradient echoes, spatial encoding using magnetic field gradients, k-space and image reconstruction, relaxation enhancement, MRI scanner hardware, diagnostic utility and clinical MRI, functional MRI, MR spectroscopy, chemical shift.

7. **Other imaging modalities in medical research** (2 lectures)
 Magnetoencephalography, electrical impedance tomography, electroencephalography, high frequency ultrasound, diffuse optical tomography, optical coherence tomography.

21 lectures in total plus 2 for revision and worked examples
PHYS30672 Mathematical Methods for Physics (M) (C/O) SEM2

Prerequisites

PHYS20171

In addition, PHYS20672 is desirable but not essential.

Follow-up units

Theoretical physics courses in 4th year

Classes

23 lectures in S6

Assessment

1 hour 30 minutes examination in May/June

Recommended texts

Feedback

Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims

The aim of this course is to achieve an understanding and appreciation, in as integrated a form as possible, of some mathematical techniques which are widely used in theoretical physics.

Learning outcomes

On completion successful students will be able to:

1. describe the basic properties of the eigenfunctions of Sturm-Liouville operators.

2. derive the eigenfunctions and eigenvalues of S-L operators in particular cases.

3. recognize when a Green’s function solution is appropriate and construct the Green’s function for some well known physical equations.

4. recognize and solve particular cases of Fredholm and Volterra integral equations.

5. solve a variational problem by constructing an appropriate functional, and solving the Euler-Lagrange equations.
6. solve problems related to the course material with the help of Mathematica.

Syllabus

1. **Review of linear vector spaces** (1 lecture)
 Definition; linear independence and basis vectors; function spaces; orthogonality and completeness relations.

2. **Eigenvectors and eigenvalues** (5 lectures)
 Review of linear operators; adjoint and Hermitian operators; eigenvectors and eigenvalues.

3. **Green's functions** (5 lectures)
 Definition. Example: electrostatics. Construction of Green's functions: the eigenstate method; the continuity method. Quantum scattering in the time-independent approach; perturbation theory.
 Travelling waves. Example: electromagnetism. The Fourier transform method; retarded Green's functions and retarded potentials.

4. **Integral equations** (5 lectures)
 Classification: integral equations of the first and second kinds; Fredholm and Volterra equations.
 Simple cases: degenerate kernels; equations soluble by Fourier transform; problems reducible to a differential equation. Neumann series solution (perturbation theory); Fredholm series (if time). Eigenvalue problems; Hilbert-Schmidt theory.

5. **Calculus of variations** (7 lectures)
Phys30732 The Physics of Living Processes (Option) SEM2

Prerequisites
PHYS10101, PHYS10352, PHYS20352

Follow-up units
PHYS40411, PHYS40631, PHYS40652, PHYS40732

Classes
24 lectures in S6

Assessment
Tutorial work (5%)
1 hour 30 minutes examination in May (95%)

Recommended texts

Supplementary reading
Alberts, B. Essential Cell Biology (Garland 2008)
Alon, U. Introduction to Systems Biology (CRC 2007)
Cotterill, R. Biophysics: An Introduction (Wiley 2002)
Nelson, P. Physical Models of Living Systems (Freeman, 2015)
Waigh, T.A. Critical Questions in Biological Physics (IOP 2017)

Recommended website
Biologicalphysics.iop.org

Feedback
Tutorial solutions for the example sheets will be marked every week and model answers will be provided.

Aims
To introduce the topic of biological physics and to develop an understanding of some physical tools to solve problems in the life sciences.
Learning outcomes

On completion of the course, students should be able to:

1. Describe the main domains within a cell and the major types of biological molecule.
2. Demonstrate an understanding of soft-matter models used to describe biological materials.
3. Describe the main experimental techniques used in biological physics.
4. Explain some of the basic models and methods that underpin systems biology.
5. Explain the basic models of electrophysiology and how they relate to the study of brains and the senses.

Syllabus

1. Building blocks (2 lectures)
 - Molecules
 - Cells

2. Soft-condensed matter in biology (10 lectures)
 - Mesoscopic forces
 - Phase transitions
 - Motility
 - Aggregating self-assembly
 - Surface phenomena
 - Biomacromolecules
 - Charged ions and polymers
 - Membranes
 - Rheology
 - Motors

3. Experimental techniques (2 lectures)
 - Photonics techniques, mass spectroscopy, thermodynamics, hydrodynamics, single molecule methods, electron microscopy, NMR, osmotic pressure, chromatography, electrophoresis, sedimentation, rheology, tribology.

4. Systems biology (4 lectures)
 - Chemical kinetics
 - Enzyme kinetics
Introduction to systems biology

5. **Spikes, brains and the senses** (4 lectures)

 Spikes
 Physiology of cells and organisms
 The senses
 Brains
PHYS30762 Object-Oriented Programming in C++ (Option) SEM2

Prerequisites
A working knowledge of programming at the level of PHYS20161 and an interest in programming

Classes
10 lectures and 10 half-day practicals in S6

Assessment
Continuous assessment by programming assignments

Recommended texts
Or any of the many C++ textbooks listed in the library reading list

Feedback
Feedback will be offered orally by demonstrators in lab-based sessions when they mark lab-based projects. Written feedback will be provided with final project marks.

Aims
1. To learn the fundamentals of Object Oriented Analysis and Design.
2. To become fluent in the C++ programming language.
3. To develop good programming style.
4. To be able to apply coding quickly and efficiently to realistic (physics) applications.

Learning outcomes
On completion successful students will be able to design and write programs in C++ using a wide range of ANSI standard features.

Syllabus
1. The basic properties of C++: constants; boolean data-types; pointers and references; dynamic memory allocation; function overloading.
2. Data streams: standard input/output; managing files.
3. Classes and objects: encapsulation; access functions; constructors and destructors; arrays of objects; friends; operator overloading; assignment operator; shallow and deep copying; this pointer.
4. Inheritance: base and derived classes; access specifiers; overriding functions; multiple inheritance.

5. Polymorphism: base class pointers; abstract base classes; virtual and pure virtual functions; interface classes.

6. Structuring programs: header files; multiple source files; namespaces.

7. Advanced C++ features: static data; templates; runtime type checking; error handling.

8. The C++ Standard Library; the boost library; other libraries.
PHYS30811 Second Vacation Essay (Core) SEM1

Assessment
This module has a credit weighting of zero, but the mark will count in the 3rd year average mark with a weight equivalent to a 3 credit unit corresponding to about 30 hours of work. The essay will contribute 80% of the total mark, while the presentation will contribute 20%.

Feedback
Feedback will be provided when the essay marks are returned. There will also be peer feedback on the presentations.

Aims
To develop the skills of written and oral communication.

Learning outcomes
On completion of the course, successful students will:
1. have better appreciation of how to present scientific information to a general audience.
2. have improved writing skills.
3. have improved presentation skills.

Syllabus
Submission of an essay of between 2300 and 2700 words on a physics-related subject selected from a list or otherwise approved by the Year Tutor for 2nd Year. The essay must convey knowledge and understanding of a physics-related topic in a measured but informal way at a level to educate and interest a member of the general public.

The deadline for submission is during Week 1 of Semester 5. The exact deadline will be announced at the end of Semester 4.

Each student will also give a 10 minute presentation on the subject of their essay to a small group of students who will provide feedback and a mark following a marking and feedback scheme. The presentation marks will be moderated by the unit coordinator. Details will be announced at the start of Semester 5.
PHYS30880 BSc Dissertation (Core) ALL YEAR

Prerequisites
PHYS20101, PHYS20141, PHYS20252, PHYS20312, PHYS20352

Assessment
Assessment is based on a written report and an interview with relative weights 50 and 30 respectively. The marking is carried out by the supervisor and an independent assessor. A mark of 40% or more in this module is required in order to obtain an honours BSc degree (see Section 9.2.5 of the Blue Book).

Penalty for Late Submission
The standard penalties as detailed in Section 9.1 of the Blue Book will apply.

Feedback
Feedback will be offered by supervisors at each stage of the work, but especially about two weeks prior to submission, when you should discuss the structure and broad content of your dissertation with your supervisor, who will offer oral feedback.

Aims
The educational aims of the BSc dissertation are to:
1. enable students to explore in depth a topic of personal interest in the physical sciences.
2. enhance information search and selection skills specific to a particular project.
3. develop such transferable skills as scientific report writing and oral presentation.
4. facilitate self-reliance and the application of project management skills (i.e. time management, use of resources) to the successful completion of the project.

Intended learning outcomes
On completion successful students will be able to:
1. apply knowledge of physical science to the planning and development of a research/technical project.

2. use a range of primary source material including library and on-line resources.

3. critically evaluate information and techniques when deciding upon research methodologies and analysis, using criteria that can be defended.
4. manage time and resources to optimal effect to produce a dissertation to a given deadline.

Format
The project takes place during the first 10 weeks of S5, or the first 10 weeks of S6. It is expected that students will spend 1.2 days per week working on the project. It must be completed and handed in at the end of this ten week period. Students are assigned at the start of S5 a project selected from their list of choices which is timed to take place when they are free from their experimental programme (PHYS30181/2). The supervisor will outline possible approaches and offer guidance and advice during the course of the project.

The student will carry out an individual study of a current topic in physics, which should show evidence of original thinking and may take the form of a design element. The focus of the project should be clearly on the physics, broadly construed; students unsure whether their planned approach meets this criterion should discuss the issue with their supervisor. The student will write a report or essay along the lines of a scientific article. The length of the report should be between 4000 and 6000 words. At the end of the project you give a 5 minute presentation followed by a 25 minute question and answer session.

Example project titles
Power for the 21st century – alternative concepts in magnetically confined fusion
Measuring the Temperature of the Troposphere by Radio-Acoustic Sounding
A Tuning Device for a Musical Instrument
The Physics of traffic jams
The carbon crunch: living for the future
A sunlight health policy
Airships: History and Future Potential
The potential impact of LED based solid state lighting
Ultra-fast dynamics of biological molecules
SETI: the search for extra-terrestrial intelligence
Quantum Computers
Accelerator Driven Sub-Critical Reactors
Deceleration and trapping of polar molecules
Negative index of refraction
Helioseismology: a look inside the Sun
Why is water essential for life?
Recent neutron scattering technology development and its application in bio-research

Ethical Approval and Risk Assessments – Students undertaking independent research work with human subjects

This process applies to any student undertaking independent* research work with human subjects as part of their taught programme require ethical approval. This is a two-stage process 1) Risk Assessment 2) Ethics approval.

*Independent means outside of a laboratory, lecture or seminar and that is not directly supervised in person by a member of staff.

If this applies to your MPhys project, please contact Dr. P. Weltevrede for further details.
PHYS31692 Exoplanets (Option) SEM2

Prerequisites
PHYS10191

Classes
24 lectures in S6

Assessment
1 hour 30 minutes examination in May/June.

Recommended texts
Cassan, P., Guillot, T., Quirrenbach, A. *Extrasolar Planets (Saas-Fee Advanced Course 31)* (Springer 2006), ISBN: 978-3-540-31470-7

Feedback
Feedback will be available on students’ individual written solutions to example sheets, which will be marked, and model answers will be issued.

Aims
To gain an understanding of exoplanetary systems, including how they are detected and ideas on their formation and habitability.

Learning outcomes
On completion of the course students will be able to:

1. Demonstrate an understanding of the variety of methods used to detect exoplanets.

2. Undertake theoretical calculations of exoplanet detection probability for different methods and be able to compare the efficacy of different detection techniques.

3. Describe the properties of known exoplanetary systems and account for the effects of detection bias.

4. Convey a knowledge of leading planet formation theories and of dynamical effects such as planet migration.

5. Explain how observations can constrain exoplanetary interior and atmosphere models.
6. Discuss current ideas about planetary habitability.

Syllabus

1. Introduction
 Course overview. The brief history of exoplanet research. Definition of a planet and its orbital elements.

2. Our Solar System in context

3. Exoplanet detection methods
 Radial velocity and astrometry; transits and TTV (exomoon detection); gravitational microlensing (bound and isolated exoplanets); direct imaging. The relative sensitivity of the different methods and their dependency on planet and host star properties.

4. Properties of detected exoplanets
 Planet frequency distribution versus planet mass, radius, host separation and host properties. Detection bias. Multiple planet systems and circum-binary planets.

5. Planetary structure
 Planet interior models for gas giant, ice giant and rocky planets. Constraints from observations. Observations of planetary atmospheres through transmission photometry and transmission spectroscopy. Comparison with simple theoretical models.

6. Planet formation theory
 Key phases of planet formation. Magneto-rotational instability. Core accretion and gravitational instability scenarios. The snow line. Planet migration.

7. Planet habitability and the prospects for extra-terrestrial life
 The stellar habitable zone and Galactic habitable zone. Current statistics of potentially habitable planets. Impact of current knowledge on speculative ideas of the abundance and spread of extra-terrestrial life and intelligent life: the Drake equation; the Fermi Paradox.
PHYS40181 (SEM1)/ PHYS40182 (SEM2) MPhys Projects

Format
Students are assigned (in pairs or individually) each semester to a project drawn from a list of their choices. Each project takes 24 days (two days per week) in the appropriate teaching or research laboratory, which will be open from 9am to 5pm on those days. Further attendance outside these times may be possible by arrangement. Although suitable instrumentation and demonstrator guidance will be available from the start, such projects are open-ended, and students will be expected to formulate and agree a plan of action with the project supervisor and to carry it through by whatever means of design, construction, interfacing and analysis prove necessary.

Full-year projects will also be offered. These take 48 days to complete and have a credit rating of 40. Full year projects only continue after the first semester if both supervisor and the students agree.

Feedback
Will be offered by supervisors at each stage of the work, but especially about two weeks prior to submission, when you should discuss the structure and broad content of your report with your supervisor, who will offer oral feedback. In addition detailed feedback on the assessment will be provided.

Philosophy
The main purpose of these projects, in addition to illustrating particular aspects of physics, is to represent tasks that might well be expected of physics graduates in the real world of research, technology and commerce. You will seek to attain a goal agreed with the project supervisor (your 'line manager') by deploying all the skills and physical background you have accumulated during the past three years.
Project types

Three types of project are available: experimental (E), involving some or all of design, construction and use of apparatus, and analysis of experimental data; computing with experimental input (CE) involving data analysis, programming or running simulations to compare with data; and computing with theoretical input (CT), involving mathematical modelling, programming and running simulations to model the behaviour of complex physical systems.

Assessment

At the end of the semester students are required to submit an individual report. The report must be detailed, well laid out and word-processed. It should summarise the tasks agreed, the steps taken to achieve them, the failures and successes en route, the extent to which goals have been achieved, and which makes recommendations for future action. The total length of the report, including figures and references, should not exceed 20 A4 pages.

At a subsequent interview (15 minute presentation followed by a 30-45 minute question and answer session) with the project supervisor and a further staff member, you will be expected to explain and justify the steps you took, to supply any missing items of detail, to show familiarity with related work published in the scientific literature, and to account for any discrepancy between this and your own results.

It is required to pass the projects in order to be awarded an MPhys degree. The final mark is a sum of the marks for:

- Implementation of project (25% of the mark), awarded for the quality of the lab book, effort, initiative, critical thinking, originality, extend and quality of the work
- Report (50% of the mark), awarded for structure & presentation, style & grammar, clarity & conciseness, figures & tables, references, physics & technical content and critical evaluation
- Interview (25% of the mark), awarded for the presentation and the understanding of the results and background physics

Detailed grade descriptors are available via blackboard. To obtain good grades you are expected to show logical thinking, a broad ranging grasp of physics, good organization, application and ingenuity, and to present a critical analysis of the conduct of the project and its results.
Full year projects
Those on full-year projects write reports and have presentations/interviews at the end of both semesters. The first (interim) report might focus on an introduction into the subject, the methods that will be used and possibly some initial results, while the second (final) report covers the overall results and conclusions obtained. The final report may refer to the first report (e.g. a detailed description of a method), but no material can be repeated from the first report (which would be self-plagiarism, see section 9.1.15 of the blue book). In the final report the majority of the work and context of the second semester work should be understandable without the necessity of reading the first semester report in any detail.

Penalty for late submission
The standard penalties as detailed in Section 9.1 of the Blue Book will apply.

Projects are designed and proposed by potential supervisors and the list will be made available on blackboard before the start of the session.

Ethical Approval and Risk Assessments – Students undertaking independent research work with human subjects
This process applies to any student undertaking independent* research work with human subjects as part of their taught programme requires ethical approval. This is a two-stage process 1) Risk Assessment 2) Ethics approval.

*Independent means outside of a laboratory, lecture or seminar and that is not directly supervised in person by a member of staff.

If this applies to your MPhys project, please contact Dr. P. Weltevrede for further details.
PHYS40202 Advanced Quantum Mechanics (M) (Option) SEM2

Prerequisites
PHYS30201 PHYS20401 is useful but not essential

Follow up units
PHYS40481, PHYS40682

Classes
24 lectures and problem classes in S6

Assessment
1 hour 30 minutes examination in May/June

Recommended texts
There is no single book that covers all the material in the course. The following books represent a basic choice; a longer list will be discussed at the first lecture.

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, which will be marked when handed in. Model answers will be issued.

Aims
1. To deepen understanding of Quantum Mechanics.
2. To prepare students for courses in quantum field theory and gauge theory.

Learning Outcomes
On completion successful students will be able to:
1. find the unitary transformations linked to symmetry operations.
2. apply time-dependent perturbation theory to variety of problems.
3. derive a mathematical description of quantum motion in electromagnetic fields.
4. apply the relativistic wave equations to simple single-particle problems.
Syllabus

1. **Symmetries in quantum mechanics** (5 lectures)
 - Unitary operators - translations in space and translations in time (evolution)
 - Rotations, reflections and parity
 - Conversation laws
 - Schrödinger vs Heisenberg picture

2. **Time-dependent perturbation theory** (5 lectures)
 - Fermi's Golden Rule
 - Selection rules for atomic transitions
 - Emission and absorption of radiation
 - Finite width of excited state
 - Selection rules for hydrogen

3. **Coupling to E&M fields** (4 lectures)
 - Minimal coupling, Landau levels, gauge invariance of QM
 - Pauli-Schrödinger equation

4. **Relativistic wave equations** (8 lectures)
 - The Klein-Gordon equation and Dirac equations and their solutions
 - Chirality and helicity
 - Lorentz invariance and the non-relativistic limit
 - The hydrogen atom and fine structure
 - Graphene
PHYS40222 Particle Physics (Option) SEM2

Prerequisites
PHYS30121

Follow-up units
PHYS40521, PHYS40722

Classes
23 lectures in S6

Assessment
1 hour 30 minutes examination in May/June

Recommended texts
Martin, B.R. & Shaw, G. *Particle Physics* (Wiley) (Main text)

Feedback
Feedback will be offered by examples class tutors based on examples sheets, and model answers will be issued.

Aims
To study the basic constituents of matter and the nature of interactions between them.

Learning outcomes
On completion successful students will be able to:

1. understand the principles of the quark model.
2. understand all interactions in terms of a common framework of exchange quanta.
3. represent interactions and decays in terms of Feynman diagrams.
4. apply relativistic kinematics to reaction and decay processes.
5. appreciate the likely direction of new research over the next 10 years.
Syllabus

1. **Ingredients of the Standard Model**
 Quarks and leptons. Mesons and baryons.
 Exchange of virtual particles. Strong, electromagnetic and weak interactions.

2. **Relativistic kinematics**
 Invariant mass, thresholds and decays.

3. **Conservation laws**
 Parity, charge conjugation and CP.

4. **The quark model**
 Supermultiplets.
 Resonances; formation, production and decay.
 Heavy quarks, charm, bottom and top.
 Experimental evidence for quarks.
 Colour; confinement and experimental value.

5. **Weak interactions**
 Parity violation. Helicity.
 CP violation, K^0 and B^0 systems.

6. **The Standard Model and beyond**
 Quark-lepton generations.
 Neutrino oscillations.
 The Higgs boson.
 Grand Unified Theories
 Supersymmetry.
PHYS40322 Nuclear Physics (Option) SEM2

Prerequisites
PHYS30101 or PHYS30201, PHYS30121, PHYS30151

Follow-up units
PHYS40421

Classes
24 lectures in S6

Assessment
1 hour 30 minutes examination in May/June

Recommended text
Krane, K.S. Introductory Nuclear Physics (Wiley)

Supplementary reading
Hodgson, P.E., Gadioli, E. & Gadioli Erba, E. Introductory Nuclear Physics, (OUP)
Martin, B.R. Nuclear and Particle Physics; an Introduction (Wiley)

Feedback
Feedback will be offered by examples class tutors based on examples sheets, and model answers will be issued.

Aims
To provide a basic knowledge of the physics of atomic nuclei, models of the structure of the nucleus and basic mechanisms of radioactive decay and nuclear reactions.

Learning outcomes
On completion successful students should be able to:
1. understand the systematics of nuclear shapes and sizes and the methods used to determine them.
2. understand the mechanisms behind nuclear decay processes.
3. explain basic properties of excited states in nuclei using simple models.
4. understand the general features of nuclear reactions.
Syllabus

1. **Basic Concepts in Nuclear Physics:**
 Brief resumé

2. **Sizes and Shapes of Nuclei:**
 Measurements of nuclear mass and charge radii: electron scattering, muonic atoms.

3. **Mechanisms of Nuclear Decay:**
 \(\alpha \) decay: Barrier penetration, Geiger-Nuttall systematics, relationship to proton/ heavy-fragment emission.
 \(\beta \) decay: Fermi theory, selection rules.
 \(\gamma \) decay of excited states: multipolarity, selection rules and decay probabilities.

4. **Excited States of Nuclei:**
 Description of the properties of excited states using the nuclear shell model. Collective behaviour: rotational and vibrational states.

5. **Nuclear Reactions:**
 Cross section. Simple features of nuclear reactions. Direct and compound-nuclear mechanisms.
 Fusion and fission.
PHYS40352 Solid State Physics (Option) SEM2

Prerequisites
PHYS10352, PHYS20252, PHYS30151

Follow up units
PHYS40451, PHYS40732, PHYS40752

Classes
23 lectures in S6

Assessment
1 hour 30 minutes exam in May/June

Recommended texts

Useful references

Feedback
Feedback will be offered by examples class tutors based on examples sheets, and model answers will be issued.

Aims
To further develop the understanding of periodicity in solids and how this periodicity and bonding governs electronic properties. To describe how quantum mechanics defines magnetic properties on a microscopic scale.

Learning Outcomes
On completion successful students will be able to:

1. identify lattice and basis for simple crystal structures and construct the reciprocal lattices.
2. demonstrate an understanding of the Fermi surface and how it is modified by the presence of a weak crystal potential.
3. demonstrate an understanding of the semiclassical dynamics of electrons in solids.
4. describe and make use of the relationship between bonding and electronic structure of semiconductors, metals and metal alloys.
5. describe the microscopic origins of the magnetic properties of solids and explain some ground-state and finite-temperature properties of ferromagnets.
6. demonstrate an understanding of low dimensional system, e.g., graphene.

Syllabus

1. **Crystal structure and the reciprocal lattice**
 (5 lectures)
 Revision of crystal structure. The reciprocal lattice and its properties. Indexing of x-ray diffraction data; the structure factor. Brillouin zones.

2. **Electronic structure of solids**
 (9 lectures)
 Revision of the free-electron model and further details of the nearly-free electron model of electronic structure; modifications to the Fermi surface near zone boundaries. The tight binding method.
 Stability of crystal structures in the nearly-free electron model for 3D and 2D systems (graphene).
 Semiclassical dynamics of Bloch electrons; cyclotron motion as a probe of electronic structure.

3. **Magnetism**
 (7 lectures)
 Diamagnetism - Langevin diamagnetism and quantum mechanical derivation.
 Origin of magnetic moments in atoms and ions; exchange interaction. Quantum description of paramagnetism; crystal field splitting.
 Interaction between magnetic moments; the Heisenberg Hamiltonian.
 Ferromagnetic ground-state and excitations; magnons. Temperature dependence of the magnetization. Other ordered magnetic states.
PHYS40411: Physics Option Unit

Prof. A. I. Golov (Coordinator)
Prof. K. S. Novoselov, Dr. I. J. Vera Marun
& Dr. R. V. Gorbachev

PHYS40411 Frontiers of Solid State Physics (Option) SEM1

Prerequisites: PHYS40352

Classes: 24 lectures in S7

Assessment: 1 hour 30 minutes examination in January

Recommended texts

Kittel, C. *Introduction to Solid State physics*, (Wiley) 2005

Feedback

Feedback will be available on students’ individual solutions to example problems and model answers will be issued.

Aims

To present several topics of contemporary solid state physics.

Learning outcomes

On completion successful students will be able to:

1. Understand the role that disorder and topological defects play in crystals.
2. Understand several unconventional properties of Graphene.
3. Understand main techniques for nanofabrication and characterisation of nanostructures.
4. Understand important quantum electronic properties of nanostructures.
5. Understand the physics and applications of magnetic materials and spintronics.

Syllabus

1. **Golov**
 (4-6 Lectures)
 - Defects in crystals, disordered materials.
 - Electronic transport in small disordered conductors.
 - Interacting electrons
2. **Novoselov**
 (6 Lectures)
 Graphene: Linear spectrum.
 Graphene: Klein paradox.
 Graphene: Optics.

3. **Mishchenko**
 (6 Lectures)
 Techniques of nanofabrication and characterisation.
 Quantum confinement, low dimensional systems: 2D and 1D.
 Zero-dimensional systems, Coulomb blockade, quantum dots.

4. **Vera Marun**
 (6 Lectures)
 Introduction into nanomagnetism.
 Fundamentals of spin-dependent transport.
 Spintronic devices and techniques.
PHYS40421 Nuclear Structure and Exotic Nuclei (Option) SEM1

Prerequisites
PHYS40322

Follow-up units
PHYS40622 and postgraduate research in Nuclear Physics

Classes
24 lectures in S7

Assessment
1 hour 30 minutes examination in January

Recommended texts

Part C+D: Nuclear Structure: Recent Developments

Feedback

Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims

1. To introduce major components of modern research in nuclear physics.
2. To provide a suitable introduction to students who will undertake research in the subject.

Learning outcomes

On completion successful students will be able to:

1. demonstrate a knowledge and appreciation of physics themes characterising recent advances in nuclear physics.
2. demonstrate knowledge and appreciation of the significance of the results from recent and current experiments.
3. demonstrate knowledge of the facilities and techniques used by nuclear physicists.
4. demonstrate knowledge and understanding of the basic models used to describe nuclear structure.
Syllabus

1. **Review of nuclear models** (1 lecture)
 Liquid drop model and independent particle shell model

2. **The nuclear shell model** (5 lectures)
 Fermi gas; Residual force; Hartree Fock; Effective interactions; two-particle states; full CI; spectra near closed shell; pairing

3. **Collective Phenomena in nuclei** (5 lectures)
 Super and hyper deformation.

4. **Weakly-bound quantum systems and exotic nuclei** (8 lectures)
 physics at the proton and neutron drip line; new decays modes – proton decay, beta-delayed proton and neutron emission; fission limit and super-heavy elements, production, detection and properties.

5. **Radioactive ion beams (RIBs)** (2 lectures)
 production by in-flight and ISOL techniques; FAIR, SPIRAL-2 and HIE-ISOLDE.

6. **Experimental techniques and recent results** (2 lectures)
 Coulomb excitation of RIBs; transfer reactions in inverse kinematics; fragmentation experiments.
PHYS40422 Applied Nuclear Physics (Option) SEM2

Prerequisites
PHYS30121

Follow-up units
PHYS40421, MACE31642 and postgraduate courses

Classes
22 lectures in S6

Assessment
1 hour 30 minutes examination in May/June

Recommended texts
Lilley, J. Nuclear Physics Principles and Applications (Wiley)
Some of the course material is also covered by sections from
Burcham, W.E. Elements of Nuclear Physics, (Longman)
Krane, K.J. Introductory Nuclear Physics, (Wiley)

Additional reading
Bennet, D.J. & Thompson, J.R. Elements of Nuclear Power, (Longman)
Coggle, J.E. Biological Effects of Radiation, (Wykham)

Feedback
Will be available on students’ solutions to example sheets. This feedback and the model answers will be available on-line.

Aims
To achieve an awareness and basic understanding of the way the principles and methods of nuclear physics are put into practice to serve the needs of a modern society.

Learning outcomes
On completion successful students will be able to:
1. identify and summarize the particular aspects of nuclear physics which are most relevant to current applications.
2. establish the key relationships describing nuclear behaviour and properties of radiation, which are most commonly exploited in areas of application, and show how they can be derived from fundamental concepts and nuclear properties.
3. illustrate, by example, how the principles and concepts of physics and nuclear physics are
currently being exploited in particular areas of technology, energy, environment and health.

4. demonstrate the ability to solve basic problems involving the application of the concepts of
physics and nuclear physics in those practical situations covered in the course.

5. show that they have a suitable grounding for further, in-depth postgraduate training in any of
the specific areas of applied nuclear physics dealt with in the course.

Syllabus

1. Interaction of Radiation with Matter
 - Theory and general features for charged particles - the Bethe-Bloch equation
 - Photon interactions - photoelectric effect, Compton scattering, pair production
 - Neutron scattering and absorption
 - Attenuation and shielding

2. Radiation detection
 - Gas-filled counters - ionization chambers, proportional and Geiger counters
 - Scintillators - properties of different phosphors
 - Semiconductor detectors: silicon, germanium

3. Biological effects of radiation
 - Stages of damage in tissue - response to different radiation types
 - Radiation dosimetry - activity, dose, quality factor
 - Radiobiological effects - molecular damage and repair, cell survival
 - Human exposure and risk
 - Environmental factors

4. Nuclear fission
 - Fission and nuclear structure, energy in fission
 - Fission products, prompt and delayed neutrons - chain reaction and critical mass
 - Role of thermal neutrons - neutron moderation
 - The thermal fission reactor: the neutron economy, criticality
 - Homogeneous reactor examples - infinite and finite reactor
 - Operation and control
Accidents

5. **Nuclear fusion**
 - Basic reactions and energetics
 - Controlled fusion - plasma confinement, laser implosion

6. **Applications of nuclear techniques**
 - Nuclear forensics and safeguards
 - Radiometric dating techniques
 - Radiation diagnosis and therapy
PHYS40451 Superconductors and Superfluids (Option) SEM1

Prerequisites PHYS30101 or 30201, PHYS30151, PHYS40352

Classes 24 lectures in S7

Assessment 1 hour 30 minutes examination in January

Recommended texts
Annett, J.F. *Superconductivity, Superfluids and Condensates* (Oxford 2004);
Guenalt, T. Basic Superfluids (Taylor&Francis 2003);
Schmidt, V.V. *The Physics of Superconductors: Introduction to Fundamentals and Applications*, (Springer 1997);
Tilley, D.R. & Tilley, J. *Superfluidity and Superconductivity*, (Bristol: Hilger 1990);
Wilks, J. & Betts, D.S. *An Introduction to Liquid Helium* (Oxford 1987);

Also (chapters on superconductivity and superfluidity) in
Hook, J.R. & Hall, H.E. *Solid State Physics*, (Manchester Physics Series, Wiley);
Kittel, C. *Introduction to Solid State Physics*, (Wiley);

Further reading
de Gennes, P.G. *Superconductivity of Metals and Alloys* (Addison-Wesley 1999)

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, and model answers will be issued.

Aims
To describe and explain the unique properties of superconductors and superfluids and to show how they exhibit quantum mechanical phenomena on a macroscopic scale.

Learning outcomes
On completion successful students will be able to:

1. describe the experimental properties of superfluids and superconductors.
2. use the concepts of ground state and excitations, the two-fluid model, and superfluid hydrodynamics.

3. provide an explanation of the electromagnetic properties of superconductors including the Meissner effect and the distinction between the type I and type II behaviour.

4. describe the vortex state and the behaviour and applications of type II superconductors.

5. understand the foundation and elementary use of the Ginsburg-Landau theory and the BCS theory.

Syllabus

1. Weakly interacting Bose gases, Bose-Einstein condensation, ground state and excitations. (2 lectures)

2. Liquid ^4He and ^3He, properties of superfluid ^4He, macroscopic wave function, quantized circulation and vortices, excitations, Landau criterion for superfluidity, two-fluid hydrodynamics, first and second sound. (6 lectures)

3. Superconductors, persistent current and Meissner effect, evidence for energy gap, London electrodynamics and penetration depth, thermodynamics and critical field. (4 lectures)

4. Ginsburg-Landau theory and coherence length, type I and type II behaviour, flux quantization, vortex state, flux pinning and applications. (4 lectures)

5. Weakly coupled superconductors, Josephson effect, dc SQUID and applications. (2 lectures)

6. Microscopic theory of superconductivity, Cooper problem, elements of BCS theory, excitations, thermodynamic properties. (6 lectures)
PHYS40481 Quantum Field Theory (M) (Option) SEM1

Prerequisites

PHYS40202, PHYS30441, PHYS20401 is strongly recommended.

Follow up units

PHYS40682

Classes

24 lectures in S7

Assessment

1 hour 30 minutes examination in January

Recommended texts

Feedback

Feedback will be available on students’ individual written solutions to selected examples, which will be marked, and model answers will be issued.

Aims

To understand the unifying framework of quantization of fundamental forces and particles in agreement with special relativity.

Learning outcomes

On completion successful students will be able to:

1. understand the concept of canonical quantization for scalar, vector and fermion fields.

2. understand the concept of global and local symmetries in Quantum Field Theory and their implications.

3. derive the Feynman rules from the Lagrangian formalism, use these to calculate S-matrix elements, and understand their physical significance.
4. calculate the lifetime of unstable particles and cross sections of reactions that occur in the lowest order of perturbation theory.

5. understand the concept of renormalization and apply this to field theories.

Syllabus

1. **Preliminaries** (3 Lectures)
 Classical Lagrangian Dynamics; Lagrangian Field Theory; Global and Local Symmetries; Noether’s Theorem.

2. **Canonical Quantization** (4 lectures)
 From Classical to Quantum Mechanics; Quantum Fields and Causality; Canonical Quantization of Scalar Field Theory; Complex Fields and Anti-Particles.

3. **The S-Matrix in Quantum Field Theory** (5 lectures)
 Time Evolution of Quantum States and the S-Matrix; Feynman Propagator and Wick’s Theorem; Transition Amplitudes and Feynman Rules; Particle Decays and Cross Sections; Unitarity and the Optical Theorem.

4. **Quantum Electrodynamics** (6 lectures)
 Dirac Spinors; Quantization of the Fermion Field; Gauge Symmetry; Quantization of the Electromagnetic Field; the Photon Propagator and Gauge Fixing; Feynman Rules for Quantum Electrodynamics.

5. **Renormalization** (6 lectures)
 Renormalizability; Dimensional Regularization, Renormalization of a Scalar Theory; Anomalous magnetic moment and the Lamb shift.
PHYS40521 Frontiers of Particle Physics 1 (Option) SEM1

Prerequisites
PHYS30101 or PHYS30201, PHYS30121, PHYS40222

Follow-up units
PHYS40722

Classes
24 lectures in S7

Assessment
1 hour 30 minutes examination in January

Recommended texts
Martin, B. & Shaw, G., Particle Physics, (3rd ed.) (Wiley)
Leo, W. R., Techniques for Nuclear and Particle Physics Experiments (Springer)
Thomson, M., Modern Particle Physics (Cambridge University Press)

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims
1. To provide a review of modern-day particle physics experiments, and the physics they aim to address.
2. To provide a suitable introduction to experimental methods commonly used in particle physics for students who will undertake research in the subject.

Learning outcomes
On completion successful students will be able to:
1. Identify the three experimental particle physics frontiers, and define their objectives.
2. Describe the facilities commonly used by experimental particle physicists.
3. Explain qualitative and quantitative techniques applied to particle physics experiments.
4. Demonstrate knowledge and appreciation of the significance results from recent and current experiments.
5. Describe experiments planned for the near future and explain their significance.
Syllabus

1. **Introduction to modern particle physics experiments**
 - Standard Model and the three particle physics frontiers
 - Particle properties and experimental methods in particle physics
 - Modern-day experiments
 - Data analysis, statistics, and Monte Carlo techniques

2. **Physics at the high energy frontier**
 - Partons and QCD
 - Electroweak gauge bosons (W and Z bosons)
 - Top quark physics
 - The discovery of the Higgs boson
 - Standard Model: successes and limitations
 - Searches for physics beyond the Standard Model
 - Future Colliders
PHYS40571 Advanced Statistical Physics (M) (Option) SEM1

Prerequisites
PHYS20101, PHYS20352

Classes
24 lectures in S7

Assessment
1 hour 30 minutes examination in January

Recommended texts
Jacobs, K. *Stochastic Processes for Physicists, Understanding Noisy Systems* (Cambridge University Press)
Reichl, L.E. *A Modern Course in Statistical Physics, 2nd ed*, (Wiley)

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims
To understand the nature and scope of the dynamical description of the macroscopic world based on statistical principles.

Learning outcomes
On completion successful students will:
1. be able to explain what a Markov process is and to use analytical methods to study the dynamics of Markovian systems.

2. understand the origin of the irreversibility seen at the macroscale including examples which illustrate the essential ideas behind the fluctuation-dissipation theorem; be familiar with modern concepts relating equilibrium and non-equilibrium statistical physics.

3. be able to show how different kinds of description of stochastic processes are related, especially the idea of a microscopic (or individually-based) model and its relation to a macroscopic (or population level) model.
4. be able to perform straightforward calculations for systems which are described by stochastic
dynamics, determining stationary probability distributions from master or Fokker-Planck
equations and correlation functions from Langevin equations.

5. be familiar with the basic numerical methods used to simulate stochastic dynamical systems
(e.g. the Gillespie algorithm, discretisation schemes for stochastic differential equations).

6. be able to survey applications of these ideas in several areas of statistical physics and in
adjacent disciplines; be aware of the use of ideas from statistical physics in modern research.

Syllabus

1. **Stochastic variables and stochastic processes**
 Revision of the basic ideas of probability theory; probability distribution functions; moments
 and cumulants; characteristic functions; the central limit theorem and the law of large numbers.

2. **Markov processes**
 The Chapman-Kolmogorov equation; Markov chains; Applications: (random walk, birth-death
 process); the master equation; methods of solution of the master equation; efficient simulation
 methods for Markov processes with discrete states.

3. **Drift and diffusion**
 The Fokker-Planck equation: derivation and methods of solution; relation to Schrödinger’s
 equation; Applications (barrier crossing, activation and mean-first-passage times).

4. **Stochastic differential equations**
 The Langevin equation and its generalisations; analytical and numerical methods of solution;
 Applications: (Brownian motion and the modelling of intrinsic and external noise).

5. **Modern topics in statistical physics**
 Jarzynski relation and fluctuation theorems; statistical physics of small systems; applications to
 complex systems modelling.
PHYS40580 Laboratory For Students Returning From A Year Abroad (Core) ALL YEAR

Note: This is a version of the third year laboratory specifically adapted to the experience and needs of MPhys and MMath&Phys students who have spent year 3 abroad, and may need additional laboratory experience before attempting an MPhys project.

Feedback
Will be offered orally by demonstrators in lab sessions, orally by demonstrators when they mark each experiment, and in writing for all lab reports and posters.

Aims and Objectives
These are presented in Section 2 of this book.

Prerequisites
PHYS20101, PHYS20141, PHYS20161, PHYS20171,
PHYS20252, PHYS20312, PHYS20352

Follow-up courses
4th year projects or postgraduate research.

Classes
Laboratory work is divided into two blocks, A and B in S5. Each block spans six weeks and is worth 10 credits. Lab blocks comprise 8 full days in the lab on Tuesdays and Thursdays, 9.00am to 5.00pm, over four weeks, followed by an assessment in the fifth week and a written report completed during weeks five and six. Students take either block A or block B.

Students may express a preference as to which blocks they take. However, the final choice of blocks for each student will be made by the Laboratory Tutor for logistic reasons.

Experiments last 12 full days: 8 days of experimental work plus 4 days for preparing presentations and for assessment. Experiments will be assigned beforehand by the laboratory tutor on the basis of student requests.

Students will work in pairs on their experiment and will be given a great deal of freedom in the way they perform the experiments, but demonstrators will discuss the experiments with them at the beginning and will be available to assist and advise at all stages.
Assessment

Assessment comprises of two components. The first is through a presentation and interview on completion of each experiment. The presentation is made jointly by the student pair. This component will take into account the following: experimental skill and logbook notes, the oral presentation, understanding of the relevant physics, quality of the results and the analysis, originality and initiative. The second component of assessment is through written reports of each experiment. Independent written reports are completed individually by each student and are assessed individually. Each written account must be in word-processed form. The credit split for the interview/report is 70/30. Dates for interviews and deadlines for written reports and posters will be published well in advance and late penalties will apply.

The learning outcomes for students in year 4 are those specified in section 2.4 above for year 4, and the assessment will be done against the outcomes given there, which are more demanding than for PHYS30180/280.

Late submissions of lab. reports

The standard penalties as detailed in Section 9.1 of the Blue Book will apply.

Late interviews

20 marks will be deducted if an interview is not booked by the end of the fourth week. If an interview is not booked by the end of the fifth week, or if students fail to show up for an arranged interview they will be awarded zero.

Passing the lab is a requirement for the award of an honours degree.

Please note that you are required to pass the lab (>40%) in order to graduate with a MPhys.

Induction to the Laboratory Course

All returning year abroad students will attend at the beginning of the year, a presentation by the Laboratory Tutor and will receive from their Personal Tutors a handout describing in detail the organisation, philosophy, and methods of assessment.
PHYS40591 Radio Astronomy (Option) SEM1

Prerequisites
PHYS20171, PHYS20312, PHYS30141 or 30441, PHYS30392

Classes
24 lectures in S7

Assessment
1 hour 30 minutes examination in January

Recommended texts

Further texts
Burke, B. and Graham-Smith, F. Introduction to Radio Astronomy, 2nd ed (CUP 2002)

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims
1. To provide an overview of phenomena which can be studied with radio techniques including a range of non-astronomical applications.
2. To introduce the techniques of radio astronomy, from antennas to radio receivers, emphasising their strengths and limitations and the applicability of these techniques to a range of non-astronomical applications.

Learning outcomes
On completion successful students will be able to:
1. be aware of the wide range of astrophysical and other phenomena which can be studied using radio receiving systems and understand the principal mechanisms by which radio emission is generated.
2. understand the physical principles generic to radio to (sub)-mm-wave imaging and sensing systems and the factors which determine their sensitivity;
3. understand the observational methods from radio to (sub)-mm-wavelengths which are best suited for different applications and for studying different phenomena and be able to make
calculations relevant to the design of receiver systems and sub-systems. The principle sub-topics are:

the operation of radio antennas and the convolution relation between the sky brightness
the operation of radio receivers, and the factors which determine their sensitivity
the theory of interferometry and the use of radio interferometers in imaging applications

4. important ways in which radio waves are affected as they travel through the interstellar medium and the Earth’s atmosphere.

Syllabus

1. **Fundamentals**
 The radio universe: “hidden” objects (pulsars, double radio sources, OH/IR stars etc) and a new light on the familiar (e.g. HII regions, supernova remnants, spiral galaxies).
 Brightness, flux density and brightness temperature, emission mechanisms, thermal and synchrotron continuum radiation, spectral lines, simple radiative transfer, antenna characteristics.

2. **Antenna concepts**
 The antenna as an aperture; Rayleigh distance; far-field Fourier transform relations and differences for the near field; effective area, aperture efficiency; beam solid angles and antenna gain; antenna temperature; Ruze formula; Wiener-Kinchine theorem, convolution and antenna smoothing; parabolic antennas and basics of quasi-optics.

3. **Receiver concepts**
 Johnson noise; Nyquist theorem and noise temperature, band-limited noise, minimum detectable signal, noise accounting in receivers; heterodyne systems and sidebands; polarization sensitive receivers; gain instabilities; Dicke-switched and correlation receivers.
 Spectral line receiver concept: detectability of spectral lines, filter bank, autocorrelation and Fourier transform receiver principles.
 Interferometric receiver concepts; spatial and temporal coherence; adding, phase switching and multiplying types; resolution; complex visibilities; aperture synthesis and imaging of various targets.
4. **Case Studies**

Application of radio astronomy techniques to specific astrophysical targets e.g. discrete source surveys; the Cosmic Microwave Background; mm-wave imaging of Earth from space; mm-wave imaging of terrestrial targets for all-weather surveillance and security.
PHYS40612 Frontiers of Photon Science (Option) SEM2

Prerequisites
Physics core courses

Classes
24 lectures in S8

Assessment
1 hour 30 minute examination in June.

Recommended texts
Hannaford P., *Femtosecond Laser Spectroscopy*, (Springer Science)
Hecht, E., *Optics*, (Addison Wesley)
Margaritondo, G., *Introduction to synchrotron radiation*, (Oxford University Press)
Saleh & Teich, *Fundamentals of Photonics*, (Wiley)

Feedback
Feedback will be available on students’ solutions to the problems presented in 3 example classes.

Aims
1. To provide knowledge of applications of photon science.
 In particular:
 - To provide a thorough knowledge of laser tweezers, optical coherence tomography, super-resolution microscopy, ultrafast laser diagnostics and terahertz-frequency spectroscopy.
 - To introduce the concepts important to the creation of synchrotron radiation (SR) and its use as a research tool in condensed matter physics and surface science.
 - To illustrate the application of SR photoemission in fields including nanotechnology.

2. To provide a suitable introduction to students wishing to pursue postgraduate research in photon science.
Learning outcomes

On completion successful students will be able to:

1. Demonstrate a knowledge of the equipment and techniques used by photon scientists.

2. Demonstrate a knowledge and appreciation of the significance of photon science applied to other disciplines – such as biological and medical science.

3. Demonstrate an understanding of how SR is created.

4. Understand the importance of SR in determining the electronic structure of condensed matter.

Syllabus

1. **Laser tweezers** (3 lectures)
 Radiation forces in the Mie and Rayleigh regimes. Transverse and radial forces within a single beam optical trap. Configuring a system. Position measurement methods (viscous flow, equipartition, power spectral density). Applications (cell trapping, DNA unraveling, microfluidics).

2. **Optical coherence tomography** (2 lectures)

3. **Super-resolution microscopy** (2 lectures)

4. **Advanced ultrafast laser diagnostics** (3 lectures)
5. **Terahertz spectroscopy**
 (4 lectures)

6. **Synchrotron radiation**
 (3 lectures)
 Definition of synchrotron radiation, discussion of its importance. The machine physics of synchrotron operation (including the operation of rf cavities), and the components of a storage ring. Parameters of SR; definition of spectral brilliance, spectral distribution, monochromation, insertion devices. Free electron lasers (FELs).

7. **Photoemission**
 (2.5 lectures)
 Basic principles of angle-integrated, angle-resolved, resonant and spin-polarised measurements. Instrumentation and data analysis; surface science and ultrahigh vacuum.

8. **Applications of SR in condensed matter physics**
 (1.5 lectures)
 Including the determination of bandstructure of solids, demonstration of superconductivity, graphene and non-destructive depth-profiling in quantum dots.
PHYS40622 Nuclear Forces and Reactions (Option) SEM2

Prerequisites
PHYS40322

Classes
24 lectures in S8

Assessment
1 hour 30 minutes examination in May/June

Recommended texts

Bertulani, C. A. *Nuclear Physics in a Nutshell* (Princeton)
Krane, K. S. *Introductory Nuclear Physics* (Wiley)
Wong, S. S. M. *Introductory Nuclear Physics* (Wiley)

Feedback

Feedback will be available on students' individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims

To introduce the main features of the forces between nucleons and reactions between nuclei, and to link nuclear physics to other areas of physics.

Learning outcomes

On completion successful students will be able to:

1. describe the mean features of the forces between protons and neutrons, and their relation to the underlying forces between quarks.

2. use cross sections and phase shifts to describe quantum mechanical scattering processes.

3. show how simple models can explain the main features of nuclear reactions.

4. demonstrate understanding of the important nuclear processes responsible for the formation of the elements.
Syllabus

1. **Nuclear forces** (8 lectures)
 - Symmetries in nuclear physics
 - From quarks to pions and nucleons
 - The deuteron
 - Scattering in quantum mechanical systems
 - Partial waves
 - Effective-range expansion
 - Pion-exchange force
 - Phases of nuclear matter

2. **Nuclear reactions** (8 lectures)
 - Reaction cross sections
 - Resonances
 - Optical potential
 - Compound nucleus
 - Direct reactions
 - Nuclear fission

3. **Nuclear astrophysics** (6 lectures)
 - The Big Bang
 - H and He burning in stars
 - Formation of heavier elements
 - Supernovae and neutron stars
PHYS40631 Laser Photomedicine (Option) SEM1

Prerequisites
PHYS20101, PHYS20141, PHYS20171, PHYS20312

Classes
12 lectures/seminars and directed learning in S7

Assessment
Examination and continually assessed. The exam constitutes 65% of the marks and the continuous assessments 35%

Recommended texts
Katzir, A., Lasers and Optical Fibers in Medicine, (Academic 1993)
Waynант, R.W., Lasers in Medicine, (CRC Press 2001)

Useful references
Niemz, M.H. Laser-Tissue Interactions, (Springer 1996)
To be supplemented by further recommended texts.

Feedback
Feedback will be offered for the continuously assessed elements of the unit.

Aims
To describe the background science of the use of lasers and light in medicine and to review selected applications.

Learning outcomes
On completion successful students will be able to:
1. understand the mechanisms describing the interaction of light with tissue.
2. review the properties of lasers and light delivery systems relevant to applications in medicine.
3. describe imaging, optical diagnostic and therapeutic applications in medicine.
4. discuss selected applications of lasers and optical techniques which are presently important in medicine.

Syllabus

1. Basic Tissue Optics and Laser Radiation – Tissue Interaction
 - Photochemical
 - Photothermal
 - Photomechanical
 - Photoablative

2. Medical Laser and Delivery Systems
 - Technology of medical lasers
 - Radiation characteristics
 - Delivery systems (fibre optics, endoscopy and imaging)

3. Diagnostic Techniques and Applications
 - Absorption, scattering and fluorescence
 - Confocal microscopy and two-photon microscopy
 - Fluorescence, Raman and terahertz spectroscopy
 - Imaging: optical coherence tomography, laser Doppler, two-photon, terahertz
 - Particle trapping: optical tweezers
 - Tissue identification by optical, spectroscopic and imaging techniques

4. Selected Medical Application
 - Laser surgery and microsurgery
 - Photomechanical applications in ophthalmology, lithotripsy
 - Photodynamic therapy
 - Selected applications in dermatology, ophthalmology, urology and dentistry.
PHYS40652 Physics of Fluids (Option) SEM2

Prerequisites: PHYS20171
Classes: 23 lectures in S8
Assessment: 1 hour 30 minutes examination in May/June

Recommended texts:
Acheson, D.J. *Elementary Fluid Dynamics*, (OUP)
Tritton, D.J. *Physical Fluid Dynamics*, (OUP)

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims
To enable the student to understand this area of classical physics with an emphasis on applications.

Learning outcomes
On completion successful students will be able to:
1. provide an introduction to fluid dynamics.
2. highlight relevant theoretical background.
3. introduce some modern ideas of hydrodynamic stability and the transition to turbulence.
4. discuss physical applications.

Syllabus

1. Basic concepts and governing equations of fluids
Fluids as continua; streamlines and pathlines; conservation of mass and the equation of continuity; rate of change following the fluid; conservation of momentum and the stress tensor; the constitutive equations and the Navier-Stokes equations.
2. **Unidirectional flows**
 Boundary conditions for viscous flow; unidirectional flows in two dimensions; Poiseuille and Couette flow; some exact solutions of the Navier-Stokes equations; Poiseuille flow in a tube; flow down an inclined plane; examples of unsteady flows.

3. **Dynamical similarity and the Reynolds number**
 Dynamical similarity and the Reynolds number; scaling of the Navier-Stokes equations

4. **Viscous flows**
 Stokes flow past a sphere; flow reversibility; swimming at low Reynolds number; lubrication theory; viscous penetration depth.

5. **Inviscid flows**
 Governing equations and boundary conditions; Bernoulli’s equation; vorticity and its physical meaning; Kelvin’s theorem; potential flow; the stream function; irrotational flows in various geometries; flow around aerofoils; lift force.

6. **Boundary layer theory**
 Prandtl’s boundary layer theory; Blasius flow; boundary layer separation.

7. **Hydrodynamic instabilities and turbulence**
 Examples of hydrodynamic instabilities; pathways to turbulence; the Kolmogorov spectrum.
PHYS40682 Gauge Theories (M) (Option) SEM2

Prerequisites
PHYS30441, PHYS40481

Classes
24 lectures in S8

Assessment
1 hour 30 minutes examination in May/June.

Recommended texts

Feedback

Feedback will be available on students' individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims

To understand in detail the origin and nature of the fundamental interactions generated by invariance of the Lagrangian under local gauge transformations.

Learning outcomes

On completion successful students will be able to:

1. Understand the concept of a Lie group and of group theory as the calculus of symmetries in physics.

2. Understand the principal of gauge invariance and generalize it from the Abelian theory of Quantum Electrodynamics to the non-Abelian cases of Quantum Chromodynamics and the Standard Model of electroweak interactions.

3. Understand in detail the Higgs mechanism as a means to generate masses for the SM fermions, gauge bosons, and the observed Higgs Boson, as well as the role of Yukawa interactions in describing lepton-and-quark-mixing phenomena in electroweak processes.

4. Appreciate the ideas and concepts involved in the motivation and construction of theories beyond the SM, including Grand Unified theories.
Syllabus

1. **Preliminaries** (2 lectures)
 - Abelian gauge invariance, Quantum Electrodynamics (QED);
 - QED Feynman rules.

2. **Group Theory** (4 lectures)
 - Lie groups; SO(N) and SU(N) Groups; Group representations

3. **Quantum Chromodynamics (QCD)** (6 lectures)
 - Non-Abelian gauge invariance; Fadeev-Popov Ghosts;
 - Becchi-Rouet-Stora Transformations; QCD Feynman Rules;
 - Asymptotic Freedom and Confinement.

4. **The Standard Model (SM) of Electroweak Interactions** (8 lectures)
 - Goldstone Theorem; Higgs Mechanism; Yukawa Interactions; Quark and Lepton Mixing;
 - SM Feynman Rules, Unitarity and renormalizability of the SM.

5. **Beyond the Standard Model** (4 lectures)
 - Grand Unification and Supersymmetry
PHYS40692 Stars and Stellar Evolution (C/O) SEM2

Prerequisites
PHYS10191, PHYS20141, PHYS20352, PHYS30151

Follow-up units
PHYS40591, PHYS40691, PHYS40771

Classes
23 lectures in S6

Assessment
1 hour 30 minutes examination in May/June

Recommended text

Useful references

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, and model answers will be issued.

Aims
To apply the fundamental physics laws to understand the physics of stellar structure.

Learning outcomes
On completion successful students will be able to:
1. describe the basic observational background of stars.
2. reproduce the basic equations of stellar structure.
3. demonstrate an understanding of the equation of state in stars.
4. demonstrate an understanding of the physics of energy transport in stars.
5. demonstrate an understanding of the physics of thermonuclear reactions in stars.
6. describe the end points of stellar evolution.
Syllabus

1. **Observed properties of stars**

2. **Equations of Stellar structure**

4. **Equations of State**
 Pressure as function of temperature and density for: Photons, Ideal gas, Degenerate electron gas. Mean molecular weight. Ionization.

4. **Additional equations: opacity and energy generation**

5. **Stellar modelling**
 Limits to the mass. Solving the coupled equations. Simple analytic stellar models: polytropes and other relations. Numerical models. The Eddington luminosity. Dimensional analysis and mass-radius relations. The HR diagram.

6. **Early stellar evolution**
 The Hayashi line. Onset of nuclear burning. Main sequence evolution. Life times.

7. **Post-main sequence evolution**
PHYS40712
Dr. P. Parkinson & Dr. I. J. Vera Marun
Physics Option Unit
Credit Rating: 10

PHYS40712 Semiconductor Quantum Structures (Option) SEM2

Prerequisites
PHYS10121, PHYS10352, PHYS20252, PHYS30151

Classes
23 lectures in S6

Assessment
1 hour 30 minutes examination in May/June, Standard format

Recommended text
Streetman, B & Banerjee S, *Solid State Electronic Devices*

Davies, J.H. *The Physics of Low-Dimensional Semiconductors (Cambridge University Press)*

Fox, M. *Optical Properties of Solids (Oxford University Press)*

Singleton, J. *Band Theory and Electronic Properties of Solids (Oxford University Press)*

Singh, J. *Semiconductor Optoelectronics* (McGraw-Hill)

Wilson, J.F. & Hawkes, J. *Optoelectronics, an Introduction* (Prentice and Hall)

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, and model answers will be issued.

Aims
To explore light absorption, emission and transport processes in bulk and low dimensional semiconductor structures. To apply these ideas to practical devices including high-efficiency LEDs and lasers, and transistors with improved characteristics.

Learning outcomes
On completion of the course students will be able to:
1. describe the processes of light emission, absorption and transport in semiconductor materials.
2. explain the physical principles governing the operation of semiconductor LEDs, semiconductor lasers and diodes.
3. describe the materials used in optical and electronic devices and advanced semiconductor growth techniques, including methods of material doping.
4. use mathematical and physical concepts to explain the consequences for the electronic and optical properties of materials when carriers are confined in two, one and zero dimensional systems.
5. explain the principles behind the realisation and application of advanced electronic structures
Syllabus

1. Review of relevant solid state physics (2 hours)
 (Band theory, dispersion relation, density of states)

2. Doping of semiconductors (0.5 hour)
 (Donors and acceptors)

3. Carrier distribution in intrinsic and extrinsic semiconductors (1.5 hours)
 (Fermi energy, electron and hole distributions in conduction and valence bands)

4. Carrier recombination and (3 hours)
 (Diffusion, drift, conductivity, Hall Effect)

5. P/N junctions (1 hour)
 (Minority carrier injection, bias)

6. Optical properties of semiconductors (2 hours)
 (Absorption, emission, Fermi’s Golden Rule, excitons, LEDs)

7. Semiconductor lasers (4 hours)
 (Condition for gain, gain spectrum, threshold current, Double Heterostructures)

8. Materials systems (2 hours)
 (III-V materials, epitaxial growth techniques, alloys, lattice matching)

9. Semiconductor quantum structures (4 hours)
 (Quantum wells, wires and dots, density of states in two, one and zero dimensions)

10. Applications of PN junctions and advanced electronic structures (3 hours)
 (Photodiodes, solar cells and high electron mobility transistors)
PHYS40722 Frontiers of Particle Physics 2 (Option) SEM2

Prerequisites

PHYS40521

Classes

24 lectures in S8

Assessment

1 hour 30 minutes examination in May/June

Recommended texts

Martin, B. & Shaw, G. Particle Physics, (Wiley)
Perkins, D.H. Introduction to High Energy Physics (CVP)

Feedback

Feedback will be available on students’ individual written solutions to examples sheets and model answers will be issued.

Aims

1. To provide a thorough and in depth knowledge of modern experimental particle physics including recent results.
2. To provide an essential basis for students who will undertake research in this subject.

Learning outcomes

On completion successful students will be able to:

1. demonstrate an appreciation and understanding of the facilities and techniques used by experimental particle physicists.
2. demonstrate and appreciate the significance of results from recent and current experiments.
3. demonstrate and appreciate the significance of experiments planned for the near future.
Syllabus

1. **Quark flavour physics**
 - CKM matrix
 - CP violation
 - LHCb experiment and recent results

2. **Neutrino physics and other rare processes**
 - Neutrino masses and oscillations
 - PMNS matrix
 - Majorana and Dirac neutrinos
 - Charged lepton flavour violation
 - Dark matter
PHYS40732 Biomaterials Physics (Option) SEM2

Prerequisites
S5 and S6 Physics cores and PHYS30352

Classes
20 Lectures + 2 problem classes in S8

Assessment
1 hour 30 minute examination in May/June

Recommended Texts

Supplementary Reading

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims
Through discussion of suitably selected topics, to develop an awareness of contributions of nanomaterials, nanotechnology to medical diagnostics and therapies, which encompasses the use of nanoscale sensors to detect internal signals and to the targeted drug deliver.

Learning outcomes
On completion successful students should be able to:
1. Understand the structures of biomolecules and their functionality in living systems.
2. Understand the relationship between the structures and properties of nanomaterials. Describe the methods of their production and determination of their structures.
3. Understand the quantum effect to the physical and chemical properties of materials at nanoscale and their potential applications in daily life and potential risks.
4. Describe the medical requirements to the advanced materials.
5. Discuss selected applications of nanomaterials and nanotechnology in the area of diagnostics, therapies and drug delivery.
6. Understand the principles of a range of advanced experimental techniques used in determination of the structure and dynamics properties of biomaterials.

Syllabus

1. Structures and properties of nanomaterials (12 lectures)
 Introduction of nanomaterials, nanotechnology and nanomedicine.
 Introduce the structures of solids: crystalline, polycrystalline, amorphous (glass) materials and their connection to physical, chemical and mechanical properties.
 Introduce structures of water, amino acids, DNA, proteins and their functions in living cell.
 Structure and properties of low dimensions, e.g. fullerenes, graphene and carbon nanotubes.
 Quantum confinement effect to the properties of nanoclusters, nanoparticles, Quantum dots and their applications in nanomedicine.

2. Nanotechnology and Nanomedicine (8 lectures)
 The introduce material’s biocompatibility and medical requirements.
 Introduce nanotechnology to medical diagnostics and therapies.
 Introduce nanoscale sensors and advanced drug delivery methods.
 Introduce experimental techniques such as synchrotron radiation and neutron scattering for determination of the structures of nanomaterials and biomolecules, STM, AFM and vibrational spectroscopic techniques for probing surfaces of biomolecules.
Phys40752 Soft Matter Physics (Option) SEM2

Prerequisites

PHYS30101 or 30201, PHYS30151, PHYS30141 or 30441

Classes

24 lectures in S8

Assessment

1 hour 30 minutes, examination in May/June

Recommended texts

Collings, P.J. & Hird, M. Introduction to Liquid Crystals
Dill, K.A. & Bormberg S. Molecular Driving Forces Garland 2003
Kleman, M., Laverentovich O. Soft Matter Physics (Springer), 2003
Rubinstein, M., Colby, R. H., Polymer Physics (OUP), 2003
Tabor, D., Gases liquids & solids CUP, 1991

Feedback

Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims

1. to provide a broad overview of the states, mechanical and thermal properties of soft matter.
2. to introduce the physics of soft materials including liquid crystals, polymers and colloids.
3. to clarify the connections between liquid crystals, polymers and colloids.

Learning outcomes

On completion successful students will be able to:

1. explain the general concepts of soft matter physics.
2. describe concepts of the physics of liquid crystals, polymers and colloids.
3. understand phase transitions in soft matter.
4. describe the connections between liquid crystals, polymers and colloids.
5. detail some key experimental techniques in relation to soft condensed matter.
Syllabus

1. **Introduction to Soft Materials**
 Classification in terms of their thermal, mechanical and often unusual physical properties.

2. **Liquid crystals**
 General structure of liquid crystalline molecules, structure of phases.

3. **The liquid crystalline state**
 Order parameter and Maier-Saupe theory.

4. **Experimental techniques in the study of liquid crystal properties**

5. **Introduction to polymers**
 Terminology and nomenclature, polymerisation mechanisms, polar masses and distributions, chain – dimensions and structures.

6. **Polymers in solution**
 Ideal solutions, Flory–Huggins theory, conformation entropy, dilute solutions.

7. **Mechanical properties of polymers**
 Energy – elasticity, entropic spring, visco-elastic behaviour.

8. **The glass transition**
 General phenomenon and theoretical models, experimental determination.

9. **Liquid crystal polymers**

10. **Colloids**
 Stability, fluctuations and forces, Stokes-Einstein, gels, emulsions and foams.

11. **Association colloids**

12. **Lyotropic liquid crystals**
PHYS40771 Gravitation (M) (Option) SEM1

Prerequisites
No prerequisite courses, but see below

Related courses
PHYS10672, PHYS20401, PHYS30201, PHYS30441, PHYS30392

Follow Up Units
PHYS40772

Classes
24 lectures and 12 example classes in S7

Assessment
1 hour 30 minutes examination in January

Prerequisite Material
Even though there are no prerequisite courses for this unit, we shall make use of vector algebra as taught, e.g., in PHYS30201, variational calculus as taught in PHYS20401 and PHYS30672, index notation and tensor calculus (e.g., PHYS10672 and PHYS30441). Some of this material will be reviewed in the first lectures, and additional self-teaching material is available for students who are prepared to make an effort to self-teach this material.

Recommended texts
The following texts are useful for revising the material for the course
D’Inverno, R. Introducing Einstein’s Relativity, (Oxford University Press, 1992)

More advanced texts
Misner, C.W. Thorne, K.S & Wheeler, J.A. Gravitation, (Freeman)
Wald, R.M. General Relativity (University of Chicago Press)
Weinberg, S. Gravitation and Cosmology, (Wiley)

Feedback
Feedback will be available on students’ individual written solutions to selected examples, which will be marked when handed in, and model answers will be issued.
Aims
Development of the ideas of General Relativity within the framework of differential geometry on a curved manifold.

Learning outcomes
On completion successful students will be able to:

1. apply the basic concepts of differential geometry on a curved manifold, specifically the concepts of metric, connection and curvature.
2. use the Einstein equations to describe the relation between mass-energy and curvature.
4. describe spherical Black Holes.
5. derive the basic properties of the FRW Universe.

Syllabus

The weakest of all the fundamental forces, gravity has fascinated scientists throughout the ages. The great conceptual leap of Einstein in his 'General Theory of Relativity' was to realize that mass and energy curve the space in which they exist. In the first part of the course we will develop the necessary mathematics to study a curved manifold and relate the geometrical concept of curvature to the energy momentum tensor. In the second part of the course we solve the Einstein equations in a number of simple situations relevant to the solar system, black holes, and a homogeneous and isotropic universe.

1. **Preliminaries**
 (4 lectures)
 Cartesian Tensors; Variational Calculus; Newtonian mechanics and gravity; Review of Special Relativity; Einstein’s lift experiment; Einstein’s vision of General Relativity, Rindler space.

2. **Manifolds and differentiation**
 (4 lectures)
 Manifolds, curves, surfaces; Tangent vectors; Coordinate transformations; Metric and line element; Vectors, co-vectors and tensors; Conformal metrics.
3. **Connection and tensor calculus**
 Covariant differentiation and Torsion; Affine Geodesics; Metric Geodesics and the Metric Connection; Locally Inertial Coordinates; Isometries and Killing’s Equation; Computing Christoffel symbols and Geodesics.

4. **Curvature**
 Riemann Tensor; Ricci Tensor and Scalar; Symmetries of the Riemann tensor and the Bianchi identities; Round trips by parallel transport; Geodesic deviation.

5. **Einstein equations**
 Energy-momentum tensor; Einstein tensor and the Einstein Equations; Newtonian limit; Gravitational radiation.

6. **Schwarzschild Solution**
 Spherically symmetric vacuum solution; Birkhoff’s theorem; Dynamics in the Schwarzschild solution; Gravitational Redshift; Light deflection; Perihelion precession; Black holes.

7. **FRW universe**
 Expansion, isotropy and homogeneity; FRW metric; Friedmann and Raychauduri equations; Solutions in radiation and matter eras; Cosmological constant; Cosmological redshift; Cosmological distance measures; Flatness and horizon puzzles.
PHYS40772 Early Universe (M) (Option) SEM2

Prerequisites
PHYS30392, PHYS40771

Classes
23 lectures in S8

Assessment
1 hour 30 minutes examination in May/June

Recommended texts
Mukhanov, V.F. *Physical Foundations of Cosmology*, (CUP, 2005)
Weinberg, S. *Cosmology* (OUP)

Feedback
Will be available on students’ individual written solutions to examples sheets, model answers will be issued. Several review sessions will be suggested during the semester.

Aims
Development of the cosmological model, its problems and their possible resolution within the framework of relativistic gravity and modern particle physics.

Learning outcomes
On completion successful students will be able to:
1. formulate the linear theory of structure formation in the CDM model, obtain solutions in simple model cases of one component universe.
2. explain the problems of the big bang cosmology and the way to solve them in inflationary theory.
3. calculate basic cosmological parameters in inflationary slow roll models.
4. indicate the relations of the Cosmic Microwave Background Radiation and cosmological parameters.
5. discuss the evidence for an accelerating universe and the possible role of dark energy.
Syllabus

1. **Standard model of cosmology: Review**
 Review of FRW universe; Natural units; Distance measures in FRW and conformal time; Basic observational facts; Neutrino decoupling and the radiation density; A brief history of time.

2. **Structure formation**
 Overview of structure formation; Relativistic perturbation theory; Conformal Newtonian gauge; Evolution of vector and tensor perturbations; Scalar perturbations in one component universe; Adiabatic and isocurvature perturbations; Power spectra; Suppression of power on small scales due to baryons and neutrinos.

3. **Cosmic microwave background**
 Basic features of the angular power spectrum; Recombination and photon decoupling; Density and velocity fluctuations; Sachs-Wolfe effects.

4. **Inflation**
 Horizon and Flatness puzzles, primordial perturbations; Definition of inflation and its solution of the horizon and flatness puzzles; Potential formulation and slow roll dynamics; reheating and the transition to radiation domination; Klein-Gordon field as a simple worked example; Fluctuations generated during inflation; Model zoo: large field, small field and hybrid models; Connecting observations with theory; Preheating and the transition to radiation domination.

5. **Dark energy**
 Vacuum energy and timescale problems; Cosmological constant; Quintessence.
PHYS40811 Physics Professional Placement (Option) SEM1

Prerequisites: PHYS30180 or PHYS30280, plus 3 from PHYS40222, PHYS40322, PHYS40352, PHYS30392

Follow-up units: None

Classes: None

Aims
To provide work experience within a professional environment that will be valuable in preparation for graduate employment. To provide the opportunity to apply skills attained from studying physics to degree level, to make a meaningful contribution to a project of current importance to a host company or research institution. To foster the development of professional skills, including the ability to communicate clearly, think independently, make informed judgments and work effectively as part of a team.

Overview
Students taking this course unit undertake a full-time, physics-based project located within a company or external research institution. It provides an opportunity to gain valuable experience working within a professional environment. It also requires further development of professional skills in preparation for graduate employment.

Eligibility and application details
This course unit is only available to MPhys students registered on the Physics degree programme and who have not studied abroad during their degree. The duration of the placement is 12 weeks in S7, followed by the submission of a written dissertation. No other course units are taken in S7, while S8 option choices may not include PHYS40182 (MPhys Project).

The number of available placements will be strictly limited and are therefore offered via competition, details of which are advertised throughout the year. Students wishing to take this course unit are required to gain approval from the course organiser in the third year before proceeding with their applications.
Format

Students are assigned both an academic mentor and a placement supervisor. It is expected that students will contact both people in advance of the start-date of the placement to make any necessary arrangements. In the early stages of the placement, students are required to produce a brief summary of their project and a work-plan, completed in consultation with their placement supervisor. Around the mid-point of the project, students are visited on their placement by their academic mentor to discuss progress. It is also expected that frequent (i.e. at least fortnightly) contact will be made by phone or email with the academic mentor throughout the placement. The final stages of the semester should be devoted to writing up the dissertation.

Assessment

This course unit is continually assessed. At the beginning of the placement, an initial work-plan is submitted. An interim report is then required around the mid-point of the placement, followed by a 30-minute progress interview during the site visit. The length of this report should be in the region of 15 A4 pages and its focus should be a review of background material that is relevant to the project. Following completion of the placement, a written dissertation is submitted with a deadline towards the end of the semester. The length of the dissertation (including figures, tables and bibliography) should be in the region of 40 A4 pages and may include the background material contained within the interim report. The dissertation should also present and discuss the methods or techniques used in the work, the results obtained and conclusions drawn. An hour-long interview will follow, comprising a 15-minute presentation followed by a discussion. A final report on the student’s performance is also provided from the placement supervisor. The final mark (ex 100) is the sum of the following components: initial work-plan (ex 5); interim report (ex 15) and interview (ex 10); dissertation (ex 35) and interview (ex 15); supervisor’s final report (ex 20).

Feedback

Feedback will be given on both the initial work-plan and interim report. Students will also be given the opportunity to submit a draft chapter on background material/theory from their dissertation for comments from their academic mentor. Feedback will be given on the final report by the assessors and from the placement supervisor on their general performance during the placement.

Learning outcomes

On completion successful students will have:

1. Gained experience working on a physics (or physics-related) problem of current importance in research or industrial application, within a professional environment.
2. Demonstrated a work ethic that is suitable for graduate employment.

3. Produced a scientific dissertation that is of professional quality, detailing their contribution to the project.

4. Demonstrated a high level of oral and written communication skills, and the ability to work within a team.
PHYS40992 Galaxy Formation (Option) SEM2

Prerequisites
PHYS30392

Follow up units
None

Classes
24 lectures in S8

Assessment
1 hour 30 minutes examination in May/June

Recommended text
Peacock, J. *Cosmological Physics* (CUP)

Feedback
Feedback will be available on students’ individual written solutions to examples sheets, which will be marked, and model answers will be issued.

Aims
To provide an introduction to the modern theory of galaxy formation and large-scale structure of the Universe.

Learning outcomes
On completion of the course, students should be able to:

1. Discuss key observable properties of the low and high redshift galaxy population within a cosmological context.
2. Understand the basic ideas of how large-scale structures grow and lead to the formation of dark matter haloes.
3. Discuss the important physical processes that set the conditions for galaxy formation.
4. Understand the properties of galaxy clusters and their application to cosmology.
5. Outline modern research methods used to model galaxy formation and discuss key outstanding problems.
Syllabus

1. Overview
 Observations of galaxies and their environments at low and high redshifts; key observational
tests for galaxy formation models; galaxies in a cosmological context.

2. Growth of large-scale structures:
 Linear growth of structures; Zel’dovich approximation; characteristic halo mass and hierarchical
growth; power spectrum.

3. Dark matter haloes:
 Spherical top-hat collapse model; Press Schechter formalism and the halo mass function;
mergers and accretion; internal structure; halo shapes and spin; substructure.

4. Gas processes:
 Hydrostatic equilibrium; Jeans mass; accretion shocks; radiative cooling; angular momentum
and disk formation; star formation and feedback processes.

5. Galaxy clusters:
 Galaxies in clusters; intracluster medium; dark matter and mass measurements; cluster scaling
relations; cosmology with clusters.

6. Frontiers of galaxy formation:
 N-body simulations; semi-analytic models; hydrodynamic simulations; outstanding problems.
PHY41702 Physics and Reality (C/O) SEM2

Prerequisites

PHYS10121, PHYS20352, PHYS30101 or PHYS30201

Follow up units

None

Classes

12 lectures and 12 two hour seminars in S6

Assessment

1 Talk (15%); 1 Essay (45%)

1 hour 30 minutes examination in May/June (40%)

Recommended text

There is no single text for this course, nevertheless it is essential that students read extensively. During the course students will be issued with study packs containing a number of key passages (e.g. chapters of books) for each topic. The lectures will develop the ideas discussed in these texts, which students are expected to read before the lectures and seminars. Students who extend their reading around the essential passages will improve their chances of doing well in the assessment.

Attendance and participation

We expect students to attend and participate in at least 11 of the 12 seminars; a 4% deduction of the final mark will be applied each time a student fails to attend or participate in a seminar, apart from the first occurrence.

Capacity

This class will take a maximum of 33 students.

Feedback

Feedback will be provided through the seminars, and on the essay or talk.

Aims

Physics was originally an attempt to understand the "nature of things", but nowadays this tends to be overshadowed by our ability to make accurate predictions, often with theories whose implications about "the real world" are obscure. Quantum mechanics, as pointed out by Schrödinger, may not even be consistent with our everyday world in which things are either here or there, and cats are either dead or alive (but not both at once). In this course we will explore a
number of issues in the interpretation of physical theories that do not seem resolvable by experiment (even in principle), and so can be labelled as metaphysics.

Learning outcomes

On completion of the course, successful students should:

1. be aware of the philosophical issues underlying topics such as space and time, entropy, quantum mechanics, and the concept of a "theory of everything"
2. have developed their skills in arguing cases where there is no clear-cut "right" answer.

Syllabus

Delivery method

The course consists of three topics, each taught over a four week period, where each week consists of a lecture followed by a seminar.

There will be three short student talks in each seminar, apart from in the first week. Students will be assigned a topic to speak on, and will be expected to answer questions from the audience.

The topics discussed will be chosen by the lecturers. They will always include some subjects from the foundations of quantum mechanics and cosmology.

Students will be asked to write an essay. The essay will be set a deadline early in week 11, and will be assigned based on preferences from a set of titles covering the first three topics taught.

Students will be asked to answer questions in the exam on a topic where they neither gave a talk nor wrote an essay on.

In 2017 the topics will be:

- Interpretations of quantum mechanics: the reality of the wavefunction, role of the observer, hidden variables, many worlds.
- Time in physics: absolute versus relative time, the arrow of time, entropy and cosmology.
- Theories of everything: from Newton, Maxwell and Boltzmann to string theory, the anthropic principle, and the nature of reality.
Phys46111 Frontiers of Laser Physics (Option) SEM1

Prerequisite PHYS20312

Classes 24 lectures in S7

Assessment 1 hour 30 minutes examination in January

Recommended texts
Davis, C. Lasers and Electro-Optics
Koechner, W. Solid-State Laser Engineering (e-book available from library)
Saleh & Teich, Fundamentals of Photonics
Siegman, A. Lasers
Svelto, O. Principles of Lasers
Wilson & Hawkes, Optoelectronics

Feedback
Feedback will be provided on example sheets.

Aims
1. To give a comprehensive overview of laser theory, laser engineering, types of laser and associated equipment, with an emphasis on practical system design and applications of lasers.
2. To examine techniques for characterisation, measurement and control of laser output.
3. To illustrate the state of the art of laser technology via applications of lasers in industry and research.

Learning Outcomes
On completion successful students will be able to:
1. describe quantitatively the characteristics of light from pulsed and c.w lasers.

2. explain quantitatively how such characteristics are produced, measured and controlled by laser engineering.

3. demonstrate an appreciation of the current state of the art in laser physics and applications.
4. synthesise a variety of relevant theoretical elements in order to solve practical problems in laser system design.

Syllabus

1. **Revision of the basics** (2 lectures)
 Absorption, spontaneous and stimulated emission; Einstein A and B coefficients; optical gain and population inversion; feedback and cavities; line broadening; electric oscillator model of transitions

2. **Pulsed Laser Operation** (6 lectures)
 The laser rate equations; gain switching; Q-switching; mode locking, passive and active.

3. **Advanced Detection Methods** (2 lectures)
 Grating-based spectrometers; etalon spectrometers; auto-correlators

4. **Tuning a laser** (3 lectures)
 Factors affecting line centre and linewidth; mode competition; tuning techniques: prisms, gratings, birefringent filters

5. **Single mode operation** (2 lectures)
 Intra-cavity etalons; interferometric cavities; the ‘twisted mode’ cavity; pulsed systems; cavity seeding

6. **Non-TEM beams** (1 lecture)
 Revision of Gaussian beam propagation and Hermite-Gauss beams; Laguerre-Gaussian beams; Bessel beams

7. **Frequency conversion** (7 lectures)
 Nonlinear susceptibilities; the wave equation in nonlinear optics; second harmonic generation; phase-matching; effective nonlinear coefficient; intra-cavity second harmonic generation; optical parametric oscillators (OPOs); walk-off; nonlinear materials’; OPO designs

8. **Advanced Laser Systems** (2 lectures)
 Oscillator-amplifier systems; regenerative amplification; example application of advanced laser systems